Computational Materials Science Seminars

Latest News

  • We have a following visitor.
    - Kaoru Yamazaki : IMR Tohoku Univ., Project Assistant Professor (Period:11/25-12/6, 2019)

  • Based on the Liechtenstein formula, we proposed a new method for efficiently calculating effective exchange coupling parameters between localized magnetic moments. To obtain effective exchange coupling parameters for periodic systems, k-space double integration is usually required. However, an efficient calculation method that avoids double integration has been found by using the continued fraction expansion method of the Fermi distribution function.
    The research results were published in J. Phys. Soc. Jpn.. This was conducted in collaboration with Prof. Gohda's group of Tokyo Institute of Technology. [2019/10/21]
    For more details, please see here.

  • It has been clarified by joint research of experiment and theory that a new single-layer h-BN is formed by nitriding the silicon grown epitaxially on the ZrB2 substrate. First-principles calculations show that the long-period moire patterns of single-layer h-BN observed in the experiment are reproduced consistently. The research results were published in J. Appl. Phys. This was conducted in collaboration with YAMADA-TAKAMURA Research Group of JAIST. [2019/10/4]
    For more details, please see here.

  • We explained the theory and implementation of the order N method in density functional theory. This commentary was published as Chapter 4 of The Art of High Performance Computing for Computational Science, Vol. 2. Springer, Singapore, Geshi M. (eds). [2019/10/2]
    For more details, please see here.

  • On MRM2019 (2019/12/10-14 at Yokohama Symposia), International Symposium of MRS-J, we will organize the symposium "Recent Advances in Computational Materials Science: Bridging Computations and Experiments" in the cluster ”A. Fundamentals for Materials”. Ozaki Lab members will make presentations as below.
    - Mitsuaki Kawamura: "First-principles study of Rashba e?ect in quantum well states of Ag/Au(111) M"
    - Masahiro Fukuda: "Structure map for AB2 type 2D monolayers by high-throughput DFT calculations"
    For more details, please see here.

Press Release

  • “Tokyo University developed a technique to accurately calculate metal, a semiconductor and an insulator.,
    Nikkan Kogyo, 2016/12/30
  • “Fujitsu Laboratories Ltd. has successfully simulated the electrical properties of a 3,000-atom nano device”,
    Nikkan Kogyo, 2014/1/14
  • “JAIST succeeded in Experimental Evidence for Epitaxial Silicene on Diboride Thin Films -”,
    Nikkan Kogyo, Kyodo News, The Kyoto Shimbun, Shikoku News, Oita Godo Shimbun, 2012/5/30
  • “Fujitsu Succeeds at Large-Scale Calculations Enabling the Computational Design of Novel Nanodevices”,
    Nihon Keizai Shimbun, 2011/8/8

Past News (Until May 2014 at JAIST)

  • The study entitled "Systematic study of electronic and magnetic properties for Cu12-xTMxSb4S13 (TM=Mn, Fe, Co, Ni, and Zn) tetrahedrite" was published in J. Appl. Phys. (Published online April 9). The research was conducted in collaboration with Dr. Suekuni of Hiroshima University and Prof. Koyano's group of JAIST. J. Appl. Phys. 115, 143702 (5 pages) (2014)
  • The study entitled "Microscopic origin of the π states in epitaxial silicene" from collaborative work of Takamura-Yamada group (School of Materials Science, JAIST), Hasegawa group (ISSP, Univ. Tokyo), and Ozaki group was published in Appl. Phys. Lett. (Published online January 16). Appl. Phys. Lett. 104, 021605 (4 pages) (2014)

Past Seminars (Until May 2014 at JAIST)
"Simulation Science" Seminars hosted by RCSS, JAIST

  • 8th Simulation Science Seminar
    • TITLE: Understanding the STM and AFM contrast in graphene, reducible oxides and biomolecules
    • SPEAKER: Ruben Perez (Professor, Theory of Condensed Matter Department, Universidad Autonoma de Madrid,
    • DATE/TIME: 2013 Nov. 18, 15:00-16:30
    • SUMMARY: We’ll review the computational tools and protocols developed in our group in order to study the mechanical and transport properties of materials, and its application to the understanding of the atomic-resolution images obtained with the scanning tunneling (STM) and the force microscope (AFM) by different experimental groups on technologically relevant materials. Firstly, we’ll focus on tuning of the electronic properties of graphene through the creation of defect and edge states, looking, in particular, to the connection of graphene with metal surfaces. Combining high resolution STM experiments and DFT calculations, we have unambiguously unveiled the atomic structure of the boundary between a graphene zigzag edge and a Pt(111) step. The graphene edges minimize their strain by inducing a 3-fold edge-reconstruction on the metal side. We have shown the existence of an unoccupied electronic state exclusively localized in the C-edge atoms of a particular graphene sublattice, which could be used to develop new dual-channel devices. Metal oxides play a key role in a wide range of technological applications. While in many cases the same FM-AFM image can be explained by different models, and even different underlying tip-sample interactions, we show here that the combination of force spectroscopy (FS) measurements and first-principles simulations can provide an unambiguous identification of the tip structure and the image contrast mechanism in rutile TiO2 (110) and anatase TiO2 (101) surfaces. In the case of STM, we have made a comprehensive study of the (2√2x√2)R45゜ missing row reconstruction of the Cu(100) surface, using different tips and systematically varying bias voltage and tip sample distance, to explore the rich variety of image contrasts observed in the experiments. Our results achieve a conclusive understanding of fundamental STM imaging mechanisms and provide guidelines for experimentalists to achieve chemically selective imaging by selecting imaging parameters. Finally, we’ll present our recent work on the structure and functionality of biological systems in their native liquid environment. We’ll discuss the application of large-scale steered Molecular Dynamics simulations, based on classical potentials developed by the molecular biology community and the use of GPUs as processing units, provide insight into the protein-graphene biocompatibility, the flexibility map of human antibodies, and the hydration properties of self-assembled monolayers of single-stranded DNA and its possible use as a label-free DNA sensor.