OpenMX Tutorial

- First trial
- On the manual
- Recommended trials
- OpenMX Viewer

Taisuke Ozaki (ISSP, Univ. of Tokyo)

The Winter School on DFT: Theories and Practical Aspects, Dec. 19-23, CAS.

First trial

Login

For the tutorial, we will use DeltaServer, please login the machine.

≻ A trial calculation

As a first step, please try to perform a SCF calculation for a methane molecule.

DeltaServer

Intel(R) Xeon(R) CPU E5520 @ 2.27GHz

192 cores (4 cores \times 48 processers) are available in total.

Login

\$ ssh-YC userid@10.105.17.42

As for your account name and password, please look at the word file you received.

How to compile OpenMX

- (1) Go to http://www.openmx-square.org/download.html
- (2) Download openmx3.8.tar.gz and the patch
- (3) Follow the instruction at

http://www.openmx-square.org/tech_notes/OpenMX-Compile.pdf

See also the page 11 in the manual.

Environment setting

Once you login DeltaServer, please do first the following:

\$ make work \$ cp -rf /home/soft/openmx3.8/work/* ./work/ \$ cd work \$ rm -rf *_rst \$ rm *.cube *.md *.md2 *.ene *.cif *.out *.xyz

Then, modify a line in 'job.pbs' as

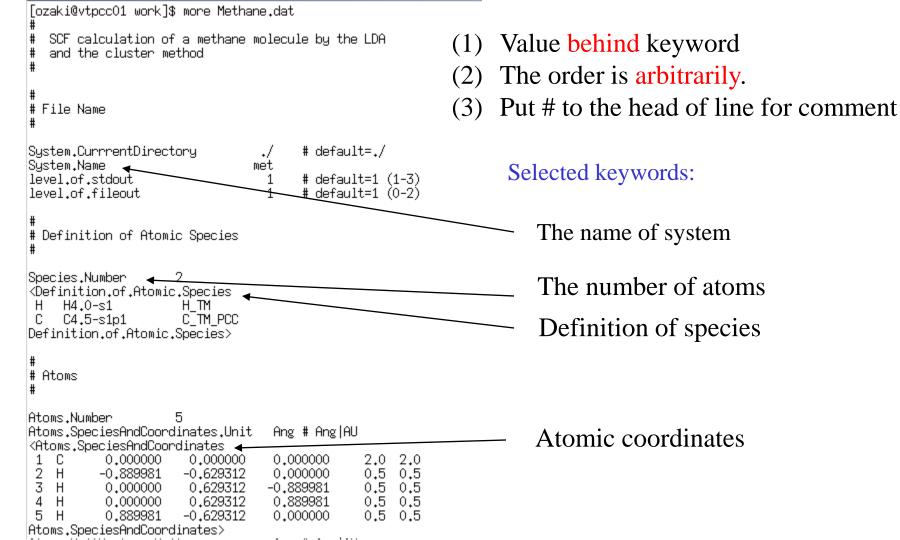
\$mpirun -machinefile \$PBS_NODEFILE -np \$ncpu \$openmx Methane.dat -nt 2 > met.std

And, add a line in 'Methane.dat' as

DATA.PATH /home/soft/openmx3.8/DFT_DATA13

A test calculation: Methane.dat

As a first trial calculation, let's try to calculate a methane molecule by


\$ qsub job.pbs

After finishing the calculations, you will obtain 11 files and 1 directory.

met.std	standard output of the SCF calculation	
met.out	input file and standard output	Cootho 17 min
met.xyz	final geometrical structure	See the 17 p in
met.ene	values computed at every MD step	the manual.
met.md	geometrical structures at every MD step	
met.md2	geometrical structure of the final MD step	p
met.cif	cif file of the initial structure for Mate	erial Studio
met.tden.cube	total electron density in the Gaussian cu	be format
met.v0.cube	Kohn-Sham potential in the Gaussian cube :	format
met.vhart.cube	Hartree potential in the Gaussian cube for	rmat
met.dden.cube	difference electron density measured from	atomic density
met_rst/	directory storing restart files	

Methane.dat

💥 ktermi

met.out

Total energy

SCF history

SCF history at MD= 1

SCF=	1	NormRD=	1.0000000000000	Uele=	-3.523143659974
SCF=	2	NormRD=	0.567253699744	Uele=	-4.405605131921
SCF=	3	NormRD=	0.103433490729	Uele=	-3.982266241934
SCF=	4	NormRD=	0.024234990593	Uele=	-3.906896836134
SCF=	5	NormRD=	0.011006215697	Uele=	-3.893084558820
SCF=	6	NormRD=	0.006494145332	Uele=	-3.890357113476
SCF=	- 7	NormRD=	0.002722267527	Uele=	-3.891669816209
SCF=	8	NormRD=	0.000000672350	Uele=	-3.889285164733
SCF=	9	NormRD=	0.000000402419	Uele=	-3.889285102456
SCF=	10	NormRD=	0.000000346348	Uele=	-3.889285101128
SCF=	11	NormRD=	0.000000515395	Uele=	-3.889285101063

KS eigenvalues

Eigenvalues (Hartree) for SCF KS-eq.

Chemical Number of HOMO = 4 Eigenvalu		= 0.00000000000000 = 8.000000000000000
	Up-spin	Down-spin
1	-0.69897190537228	-0.69897190537228
2	-0.41522646150979	-0.41522646150979
3	-0.41522645534084	-0.41522645534084
4	-0.41521772830844	-0.41521772830844
5	0.21218282298348	0.21218282298348
6	0.21218282358344	0.21218282358344
7	0.21227055734372	0.21227055734372
8	0.24742493684297	0.24742493684297

Uele.	-3.889285101063
llkin.	5.533754016241
UHO.	-14.855520072374
UH1.	0.041395625260
Una.	-5.040583803800
Unl.	-0.134640939010
UxcO.	-1.564720823137
Uxc1.	-1.564720823137
Ucore.	9.551521413583
Uhub.	0.000000000000
Ucs.	0.000000000000
Uzs.	0.000000000000
Uzo.	0.000000000000
Uef.	0.000000000000
Uvd₩	0.000000000000
Utot.	-8.033515406373

Mulliken population

Total spin S = 0.00000000000

		Up spin	Down spin	Sum	Diff
1	С	2.509755704	2.509755704	5.019511408	0.000000000
2	Н	0.372561098	0.372561098	0.745122197	0.000000000
3	Н	0.372561019	0.372561019	0.745122038	0.000000000
4	Н	0.372561127	0.372561127	0.745122254	0.000000000
5	Н	0.372561051	0.372561051	0.745122102	0.000000000
Э	п	0.372301031	0.572001051	0.740122102	0.0000000000

Sum of MulP: up = 4.00000 down = 4.00000 total= 8.00000 ideal(neutral)= 8.00000 **Specification of the directory storing *.pao and *.vps**

The directory *DFT_DATA* can be specified by the keyword in your input file as

DATA.PATH /home/soft/openmx3.8/DFT_DATA13

Database of PAO and VPS

http://www.jaist.ac.jp/~t-ozaki/vps_pao2013/

Database (2013) of optimized VPS and PAO

The database (2013) of fully relativistic pseudopotentials (VPS) and pseudo-atomic orbitals (PAO), generated by ADPACK, which could be an input data of program package, OpenMX. The data of elements with the underline are currently available. When you use these data, VPS and PAO, in the program package, OpenMX, then copy them to the directory, openmx*.*/DFT_DATA13/VPS/ and openmx*.*/DFT_DATA13/PAO/, respectively. The delta factor of OpenMX with the database (2013) is found at <u>here</u>.

E	Public release of optimized and well tested VPS and PAO so																
Н	that users can easily start their calculations.										<u>He</u>						
Li	<u>Be</u>											<u>B</u>	<u>C</u>	<u>N</u>	<u>0</u>	E	<u>Ne</u>
<u>Na</u>	Mg											<u>AI</u>	<u>Si</u>	Е	<u>S</u>	<u>CI</u>	<u>Ar</u>
K	<u>Ca</u>	<u>Sc</u>	<u>Ti</u>	V	<u>Cr</u>	<u>Mn</u>	<u>Fe</u>	<u>Co</u>	<u>Ni</u>	<u>Cu</u>	<u>Zn</u>	<u>Ga</u>	<u>Ge</u>	<u>As</u>	<u>Se</u>	<u>Br</u>	<u>Kr</u>
<u>Rb</u>	<u>Sr</u>	Y	<u>Zr</u>	<u>Nb</u>	<u>Mo</u>	<u>Tc</u>	<u>Ru</u>	<u>Rh</u>	<u>Pd</u>	<u>Ag</u>	<u>Cd</u>	<u>In</u>	<u>Sn</u>	<u>Sb</u>	<u>Te</u>	I	<u>Xe</u>
<u>Cs</u>	<u>Ba</u>	L	<u>Hf</u>	<u>Ta</u>	W	<u>Re</u>	<u>Os</u>	<u>Ir</u>	<u>Pt</u>	<u>Au</u>	<u>Hg</u>	ΤI	<u>Pb</u>	<u>Bi</u>	<u>Po</u>	At	<u>Rn</u>
Fr	Ra	А															
	L	La	Ce	Pr	<u>Nd</u>	Pm	<u>Sm</u>	Eu	Gd	Tb	Dy	<u>Ho</u>	Er	Tm	Yb	<u>Lu</u>	
	А	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Specification of PAO and VPS

PAO and VPS are specified by the following keyword:

<Definition.of.Atomic.Species
 0 07.0-s2p2d1 0_PBE13
 H H7.0-s2p1 H_PBE13
Definition.of.Atomic.Species>

- O7.0 means O7.0.pao.
- -s2p2d1 means 2, 2, and 1 radial functions are allocated to s-, p-, and d-orbitals.
- In this case, for oxygen atom, 2×1+2×3+1×5=13 basis functions are allocated.
- O_PBE13 meand O_PBE13.vps.

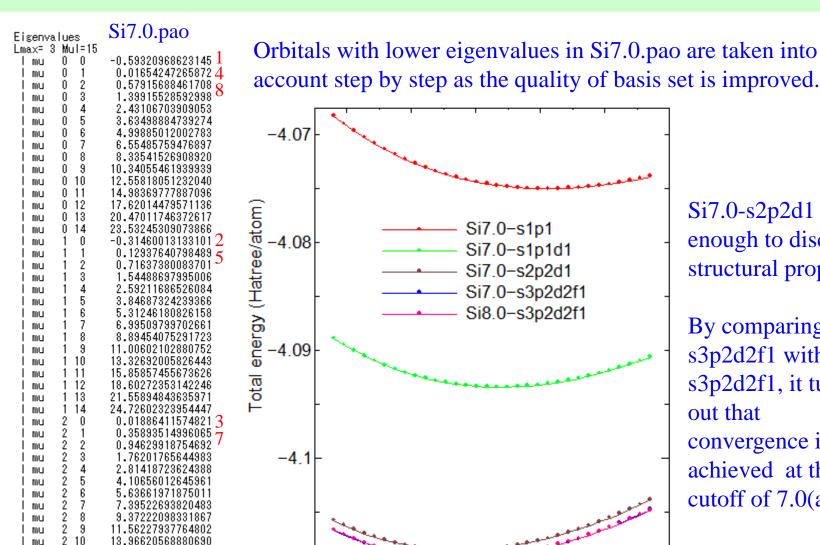
The path for O7.0.pao and O_PBE13.vps is specified by

DATA.PATH /home/soft/openmx3.8/DFT_DATA13 Default value is '../DFT_DATA13'.

How to choose basis functions: H₂O case

By clicking H7.0.pao and O7.0.pao in the database(2013), you may find the following

http://www.jaist.ac.jp/~t-ozaki/vps_pao2013/H/index.html


http://www.jaist.ac.jp/~t-ozaki/vps_pao2013/O/index.html

Eigen values	**************************************
Eigenvalues Lmax= 3 Mul=15 I mu 0 0 I mu 0 1	-0.23595211038442 0.14109389991827
mu 02 mu 03 mu 04 mu 05 mu 06 mu 07	0.61751730037441 1.31890671598573 2.24052765608302 3.37954791544661 4.73488369825610
mu 0 7 mu 0 8 mu 0 9 mu 0 10 mu 0 11	6.30608874470710 8.09282718517299 10.09464035732420 12.31085267019158 14.74057314485273
mu 012 mu 013 mu 014 mu 10	17.38277845742691 20.23645090753857 23.30073926597344 0.10914684890465
mu 1 1 mu 1 2 mu 1 3 mu 1 4 mu 1 5 mu 1 6 mu 1 7	0.47776040452236 1.06988680483686 1.88261331124981 2.91175885838084 4.15601184789448
lmu 18 lmu 19	5.61454131060210 7.28681796296307 9.17254361476158 11.27156766390586 13.58381334569800
mu 1 11 mu 1 12 mu 1 13 mu 1 14	16.10921637499960 18.84767560575107 21.79902110024685 24.96300480798286
mu 2 0 mu 2 1 mu 2 2 mu 2 3 mu 2 4	0.27851528500170 0.76970400958463 1.47576814497054 2.39881523735167 3.53719346447754

**********	***************************************
Eigen valu	ies(Hartree) of pseudo atomic orbitals
**********	***************************************
	07.0.pao 🔒
Eigenvalues	
Lmax= 3 Mul=	:15 🖌 🖌 🕇
lmu 00	
lmu 01	0.06809061901229 🛌
lmu 02	0.52709275865941
lmu 02 lmu 03	1.24995140722317 4
lmu 04	2.21829552402723
Imu 05 Imu 06 Imu 07	3.41945468859267
lmu 06	4.84509607059749
lmu 07	6.48825090142865
lmu 08	8.34207134316001
lmu 09	
1 mu 010	12.65513764955926
1 mu 0 11	15.10428688136984
mu 012	17.74677530362947
mu 0 13	
ļmu 0,14	
ļmu 1 Q	
mu 1 1	
mu 1 2 mu 1 3 mu 1 4 mu 1 5 mu 1 6 mu 1 7 mu 1 8	
mu 1 3	1.35995471521821
mu 1 4	2.31377697411480
I mu 1 5	3.50052618379026
l mu 1 6	4.91841590421346
mu 1 7	6.56499793348396
I mu 1 8	8.43634105410091
1 mu 1 9 1 mu 1 10	10.52733540479795 12.83276989780839
	15.34880171573570
mu 11	18.07414632417004
Imu 112 Imu 113	21.01013110934429 Q
	24.15933607166566 🖌 🞖
mu 2 0 mu 2 1 mu 2 2 mu 2 3 mu 2 4	0.70705247436937
I mu 2 2	1.34714706672243
mu 2 2 mu 2 3 mu 2 4	2.19799459356269
1 mu 2 4	3.26511989658328
1 1104 2 4	

Choosing states with lower eigenvalues leads to H7.0-s2p1 and O7.0-s2p2d1.

How to choose basis functions: Si case(1)

-4.11

5.4

5.6

Lattice constant (Ang.)

5.8

2 11

2 12

2 13

Û.

3

2 14

3

mu

mu

mu

mu

mu

mu

mu

mu

16.58651812641581

19.42296574188659

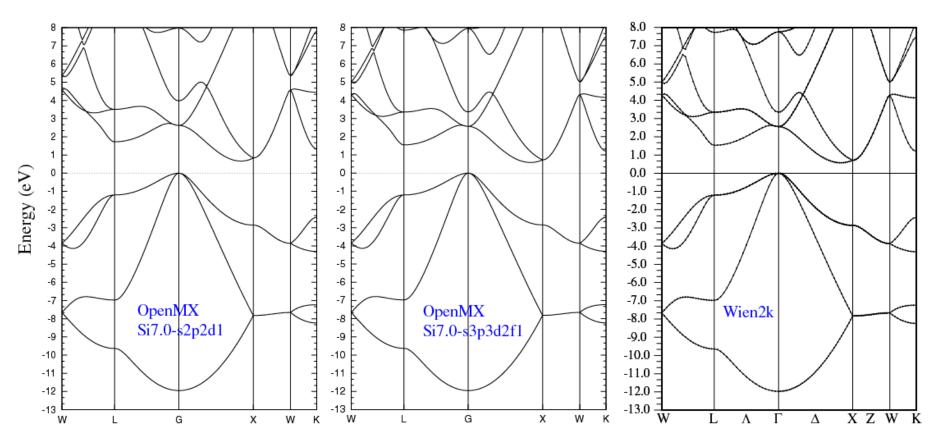
22.47308081363278

25.73538272482773

0.79082836114569

1.52992065308726

2.52537261496132


0.28356769151846 6

Si7.0-s2p2d1 is enough to discuss structural properties.

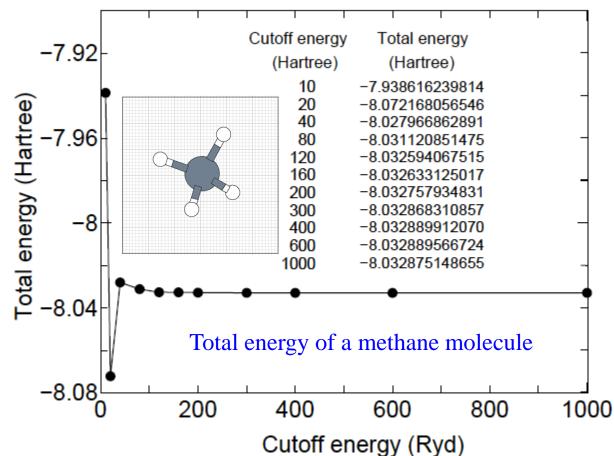
By comparing Si7.0s3p2d2f1 with Si8.0s3p2d2f1, it turns out that convergence is achieved at the cutoff of 7.0(a.u.).

How to choose basis functions: Si case(2)

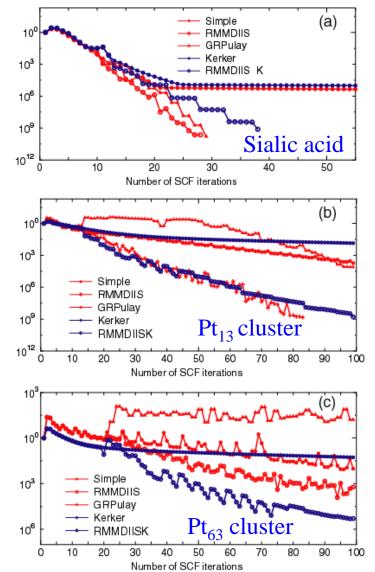
With respect to band structure, one can confirm that Si7.0-s2p2d1 provides a nearly convent result.

While the convergent result is achieved by use of Si7.0-s3p2d2f1(Si7.0-s3p3d2f1), Si7.0-s2p2d1 is a balanced basis functions compromising accuracy and efficiency to perform a vast range of materials exploration.

Choice of cutoff energy


scf.energycutoff 200 # default=150 Ryd

The FFT grid is used to discretize real space and calculate $E_{\delta ee}$, E_{xc} , and can be specified by scf.energycutoff.


In most cases, 200 Ryd is enough to get convergence.

However, large cutoff energy (300-400 Ryd) has be used cases such as use of pseudopotentials with deep semi-core states.

Memory requiment O(E^{3/2})

Mixing methods

Available mixing methods:

Simple mixing (Simple)

Residual minimization method in the direct inversion iterative subspace (RMM-DIIS)

Guaranteed reduction Pulay method (GR-Pulay)

Kerker mixing (Kerker)

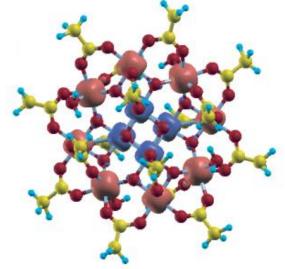
RMM-DIIS with Kerker metric (RMM-DIISK)

RMM-DIIS for Hamiltonian (RMM-DIISH)

Recommendation: RMM-DIISK or RMM-DIISH

See also the page 56 in the manual.

Visualization


Cube files such as *.tden.cube, *.sden.cube, *.dden.cube can be visualized by many software such as

XCrySDen VESTA

Also*.md file is stored in xyz format which can be visualized by XCrySDen and OpenMX Viewer.

On phi, XCrSDen is available.

Data on DOS and band dispersion can be visualized by gnuplot.

On the manual

Please download the manual at

http://www.openmx-square.org/openmx_man3.8/openmx3.8.pdf

The manual is self-contained, the most of calculations explained in the manual are traceable by using the input file stored in the directory 'work'.

Please try to perform those calculations one by one depending on your interests.

Recommended trials

1. Geometry optimization

Perform a geometry optimization using 'Methane2.dat'. See the page 65 in the manual.

2. Density of states

Calculate DOS using 'Cdia.dat' See the page 79 in the manual.

All the input files can be found in the directory 'work'.

3. Wannier functions

Calculate Wannier functions for Si bulk using 'work/wf_example/Si.dat', and perform the band interpolation. See the page 159 in the manual.

4. Reaction barrier by the nudged elastic band (NEB) method

Calculate a reaction barrier using 'C2H4_NEB.dat'. See the page 182 in the manual.

5. Transmission of a carbon chain

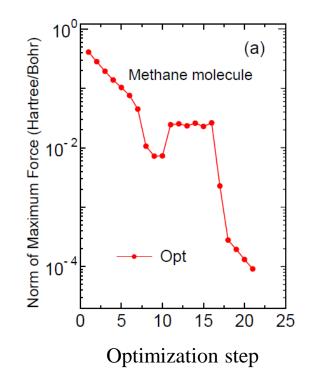
Calculate an electric transmission of a carbon chain using 'Lead-Chain.dat', 'NEGF-Chain.dat'. See the page 136 in the manual.

6. Spin-orbit coupling

Calculate a band structure by taking account of SOC using 'GaAs.dat'. See the page 117 in the manual.

Geometry optimization (Methane2.dat)

The x-coordinate of a methane molecule is displaced by 0.3 Å, and perform the geometry optimization.


1	С	0.300000	0.000000	0.000000	2.0	2.0
2	Н	-0.889981	-0.629312	0.000000	0.5	0.5
3	Н	0.000000	0.629312	-0.889981	0.5	0.5
4	Н	0.000000	0.629312	0.889981	0.5	0.5
5	Н	0.889981	-0.629312	0.000000	0.5	0.5

Atoms.SpeciesAndCoordinates>

Using the steepest decent (SD) method, the norm of maximum force converges as shown in the left figure:

met2.md can be visualized by OpenMX Viewer.

See also the page 65 in the manual.

Density of states (Cdia.dat)

Density of states (DOS) for Kohn-Sham eigenvalues can be calculated by the following two steps:

(1) SCF calculation

Perform the SCF calculation by 'Cdia.dat'.

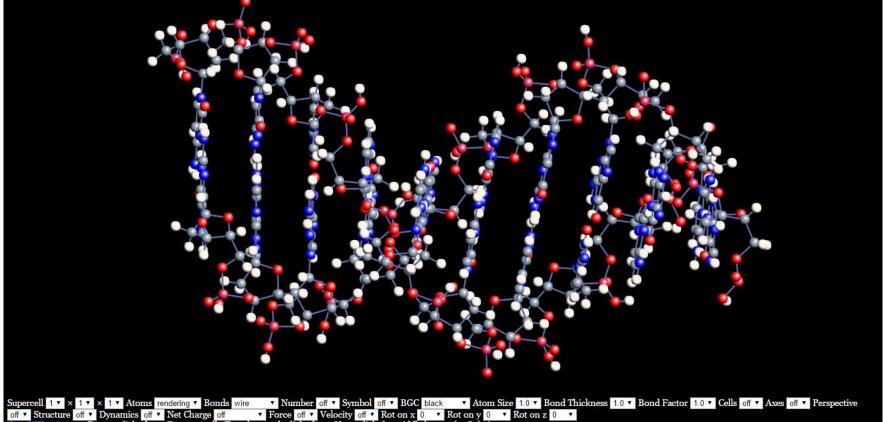
(2) DOS calculation

(2.a) In openmx/source, compile DosMain\$ make DosMain

(2.b) mv work, and perform the DOS calculation using 'DosMain'.

\$./DosMain cdia.Dos.Val cdia.Dos.Vec

See also the page 79 in the manual.

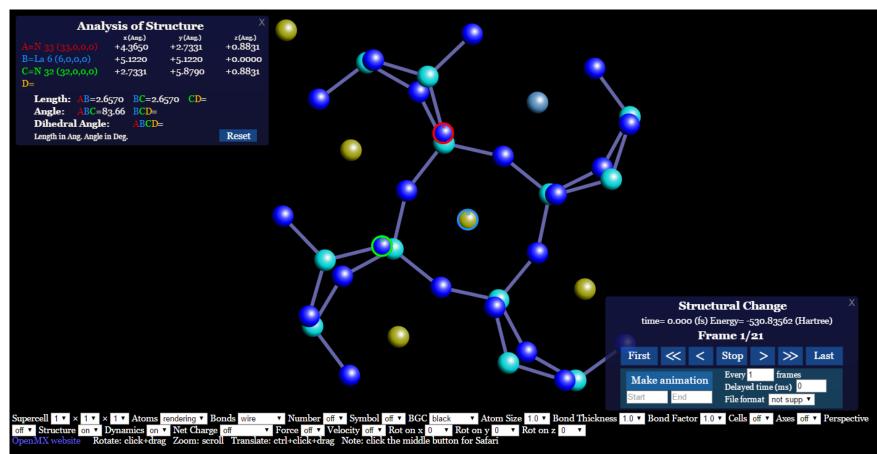

On OpenMX Viewer

http://www.openmx-square.org/viewer/

- 6611 lines written by html5, css3, js, and canvas2d
- dat, xyz, and md files are readable
- Rotation, zoom, and translation
- Easy change of atom size, bond thickness, and bond factor
- Atom index and atom symbol
- Supercell representation
- Structure analysis
- Analysis of geometry optimization
- Charge analysis
- Google Chrome recommended due to its performance

Easy check of a dat file

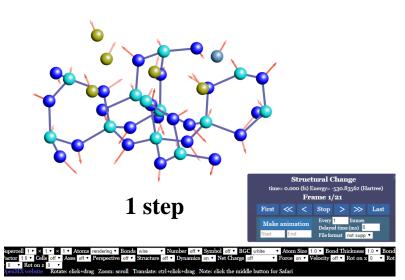
A dat file can be easily checked by drag and drop to any browser.

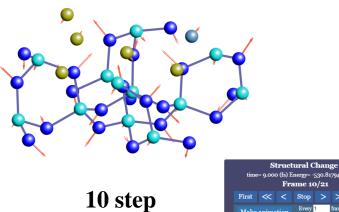


Zoom: scroll Translate: ctrl+click+drag Note: click the middle button for Safari

Analysis of structure optimization

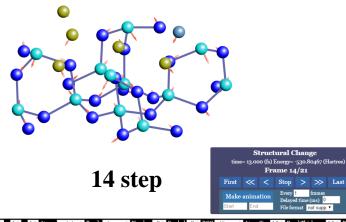
A md file can be easily analyzed by drag and drop to any browser.

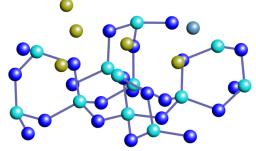

- Trace of optimization process
- Analysis of structure
- Check residual forces



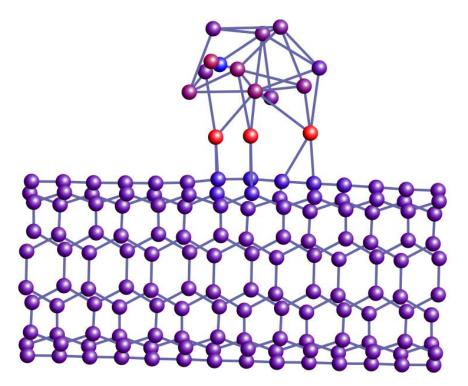
Analysis of structure optimization

Residual forces can be visualized by vectors.


Last



Note: click the middle button for Safa aelato: atrl+aliak+drag



m: scroll Translate: ctrl+click+drag Note: click the middle button for Safar

Analysis of structure optimization

Using a md file, one check easily check spatial charge distribution.

Supercell 1 • × 1 • Atoms rendering • Bonds wire • Number off • Symbol off • BGC white • Atom Size 1.0 • Bond Thickness 1.0 • Bond Factor 1.0 • Cells off • Axes off • Perspective off • Structure off • Dynamics off • Net Charge Mulliken-C • Force off • Velocity off • Rot on x 0 • Rot on y 0 • Rot on z 0