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What 1s FPMD ?

In usual molecular dynamics
simulations, the total energy |
expressed by classical model
potentialsOn the other hand,
In the FPMD the total energy
and forces on atoms are
evaluated based on quantum
mechanics.

It enables us to treat bond formation
and breaking.

Simulation of chemical reactions

Elecronic states:
guantum mechanics
DFT

W

Forces on atoms
Hellmann i Feynman force

o

Motion of ion:;
classical mechanics
Molecular dynamics methods



Hellmann-Feynman theorem
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The derivative of energy consists of only the derivative of potential.
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Time evolution of Newton eqg. by the Verlet method

Taylor expansion of the coordinateR at time t
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Temperature control by the Nose-Hoover method

Micro-canonical ensemble .
Let the part of system be a canonical ensemble.

Heat bath T, . o5 N 2,;%
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In case of T;<T: G becomes larger — decelerating

In case of T >T: ¢ becomes smaller — accelerating



Finite temperature molecular dynamics
simulation of carbon-nanotubes

Observation of buckling of CNT tAFM and STM
M.R.Falvoet al., Nature 389, 582 (1997)
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Finite temperature molecular dynamics
simulation of carbon-nanotubes




Deformation of CNT under finite temperature

Energy curve and stress at

15 % compression
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FIG. 1. Buckling of (10, 10) nanotubes, which include 2280
carbon atoms, under axial compression at (a) 0 and (b) 300 K
obtained by O(N) TBMD simulations. These snapshots are at
80% of the initial length (140 A).

TO, Y.lwasa, and T. Mitani, PRL 84, 1712 (2000)



Car-Parrinello (CP) method for FPMD

By introducing a fictitious mass for wave functions and fictitious kinetic
energy of wave functions, the following Lagrangian is defined:

. 1 .
L=3pi [ |ifde + 5 2 MR, — E[{ei} AR+ XAy ( [ wiyde — 5-:'-3')
i n i]

A‘ : constant

Path by the CP method

E[W’.i ’ tRn}]

R. Car andM. Parrinellg
PRL 55, 2471 (1985).

E[IR,!]1: BO surface

The dynamics by the CP method proceeds while vibrating near the Bofn
Oppenheimer surface. The conventional dynamics corresponds to dashed line.



Meta-dynamics for accelerating rare events

A + E+YD

Reactant A+B

Product C+D

Although the CPMD method is quite efficient, actual

reactions will require a long time simulation.
A. Laioand M.Parrinellq

PNAS 99, 12562 (2002).



Meta-dynamics for accelerating rare events

A + E+YD

Reactant A+B

Product C+D

After exploring certain phase space, a penalty is given by adding gaussiar
functions to there to avoid exploring the same phase space again. This
treatment can significantly accelerate exploring of phase space.



Nobel Prize

The Nobel Prize in Chemistry 1998

The Nobel Prize in Chemistry 1998 was
divided equally between Walter Kohrifor
his development of the densifunctional
theory" and John A. Popléfor his
development of computational methods in
guantum chemistry"

Walter Kohn John A. Pople

The Nobel Prize in Chemistry 2013

The Nobel Prize in Chemistry
2013 was awarded jointly to
Martin Karplus, Michael Levitt
and Arieh Warshel "for the
development of multiscale models
for complex chemical systems"

Arieh Warshel



QM/MM method

quantum physics

The idea developed by
the laureates of the
Nobel prize in 2013.

classical
physics

dielectric
medium



An application of CPMD

A First Principles Molecular Dynamics insight
to ATPase (ATP Synthase)

AProf. M. Boero(Univ. of Strasbourg)
ADr. T. Ikeda Genken,

AProf. E. Itoh(Tokushim&8unri Univ.),
AProf. K. Terakura(NIMS)

JACS 128 (51), 16798 (2006).



Finding reaction coordinates:
Nudged Elastic Band (NEB) method

The total energy of a system is a function ’Q’Q'
In a hyperspace of (38) dimensions.
The reaction coordinate is definegda
minimumenergy pathway connecting ﬁ;:-ff_f./
two local minima inthe hyperspace. The""'..,.l ‘ : B
nudgedelasticband (NEB) method is '\~ < .

a very efficient tool to find the minimum”
energy pathway.

(A) H. JonssonG. Mills, and K. W. Jacobsen, @lassical and Quantum Dynamics in
Condensed Phase Simulatipeslited by B. J. Berne, @iccotti, and D. F. Coker
(World Scientific, Singapore, 1998), p. 385.

(B) G. Henkelman and H. Jonsson, JCP 113, 9978 (2000).

In later slides, they are referred as Refs. (A) and (B).



Nudged Elastic Band (NEB) method

The NEB method provides a way to find a minimum energy pathway (MEP)

connecting two local minima by introducing images interacting each other
located on a trial pathway.
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Taken from Ref. (A). "AB Taken from Ref. (B).
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Plain Elastic Band (PEB) method

A simple idea to find a MEP is to introduce an interaction between
neighboring images by a spring. The optimization of the object funBtion
tries to shorten the length of MEP.

P
Pl
S(Ri.Rs. -+ Rp_q) = E E(R;) + E T(Ri — Rg-_l)2
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The idea is called a plain elastic band
(PEB) method. However, the PEB
method tends to cause a drift of energy
pathway as shown in the left figure.

. One should consider another way to
Taken from Ref. (A). avoid the drift of the energy pathway.



To calculate the
force, only two

account among F, =
four contributions.

Nudged Elastic Band (NEB) method

The force can be divided to two contributions:
Parallel force
Perpendicular force

P P
Pk g
S(Ry.Ro, - - +Z i-1)’

causing norequidistance / \ \

distribution of images along
the energy pathway.

JE(Ry)
IR, i

aEspring aEsprillg
IR R, 1

causing the drift of energy pathway
upward along the perpendicular
direction.

The treatment allows
terms are taken into i ) us to avoid the drift of
B OE(Ry) B O FE¢pring energy pathway, while
IR, N IR ' the physical meaning
of the object function is
not clear anymore.



Maximum Force (hatree/bohr)
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Maximum Force (hatree/bohr)
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Stress tensor

0= (58 B 0&)S

A3=(3g1,85:33)

Strain tenso
Cartesian coordinate as

r'=( 4

E
Then, the stress tensliﬁ ~
gn o & =(21,8 233
can be related the energy derivative
w.r.t. cell vectorstE.
Ha;
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Stress tensor INOpenMX

In OpenMX, the total energy is defined by

(NL)
Et E. +FE +Eec +Eaee +EXC +ESCC

ot ~ “—“kin na

Thus, at least there are six contributions to stress tensor.

uEtot — Ekin _I_;i#a #E(eTP =Eee % Ihicg

uegh uegh l'l glh l’l ah egh J'egh

A The termsare decomposed to derivatives of matrix elements and overlap stress,
leading to rather straightforward analytic calculations.

A The term is analytically evaluated in reciprocal space.
Is analytically evaluated in real space with a carefully derived formula.

The computational time is almost the same as that for the force calculation.



Stress tensor forg,.,,, E, ., and E_.

na’

The derivative of £, is given by

(Rn)
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The latter derivatives can be transformed to the derivatives w.r.t. Cartesian coordinate:
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The former derivatives can be transformed to the overlap stress tensor:
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The energy terms, Eand E, can also be evaluated in a similar way.
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Stress tensor fork; . .

The derivative of E.is given by

p'Eo’ee —_ ~ 1 Hdn(r) 1 O\/H (r )r
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The second term is given by
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The third term is given by
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Stress tensor fork, .

The derivative of E is given by

UE,. .. fr Bt Lo g Y| P
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The second term contributes the overlap stress tensor, and third term can
be evaluated as
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Variable cell optimization

Initial Hessian: Schlegel 6s met hod
Preconditioning: RMIDIIS

Hessian update: BFGS

Update of positions: Rational function (RF)

RF method
3N a9
E = ED—I—Z(gf) (:I:%IED))—i_%Z(C}i%iJ) (i"g'—fggo))( _55'3 _)\Z l]

It is very important to construct the initial Hessian including
Internal coordinates, cell vectors, and thess ternfor fast and
stable convergence.

& Int |Int- Cell
H=BF =
&Cell- Inf  Cell




Approximate Hessian by Schlegel

Schlegel proposed a way of constructing an A
approximate Hessian. A force constant for every pair F —

of elements is fitted to the following formula, where (r - B)3
dataset were constructed by B3LYP calculations.

H.B. SchlegelTheoret Chim. Acta (Berl.) 66, 333
(1984); J.MWittbrodtand H.B. Schlegel, J. Mdbtruc

(Theocher 398399, 55 (1997).
Parameter B for Badger's rule computed at the B3LYP level of theory

Period 1H 2 Li-F 3 Na-Cl 4 K-Br 5 Rb-1 6 Cs-At
1 - (L2573 0.3401 0.6937 0.7126 (18335 0.9491]
2 0.9652 1.2843 1.4725 1.6549 1.7190
3 1.6925 1.8238 2.1164 2.3185
4 2.0203 2.2137 2.5206
5 2.3718 25110

Suppose the total energy is given by the sum of pairwise potentials. Then, the deriva
lead to the following relation:

vzzga%éjaan R ) H =BF

where B is the Bnatrix of Wilson, H is the approximate Hessian in Cartesian coordina



Benchmark of the approximate Hessian
In OpenMX

For both mol ecules and bul k
method improves the convergence substantially.
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