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Intuitive ideas of pseudopotentials

Since core electrons is situated at Electronic structure of Si bulk
energetically very deeper states, they energy (ev),

solids, they do not change so largely.
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calculation will become quite easier.
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OPW (Orthogonalized Plane Wave Method) method

C. Herring, Phys. Rev. 57, 1169 (1940)

H|;) = Bl i=cv

It is assumed that |+ has been solved in advance. ~ Vvalence electrons oscillate near the
PW o P . _ vicinity of nucleus because of the
|PW. q) = exp(iq - r) is orthogonalized with |.) by orthogonality with core electrons.
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Phillips-Kleinman (PK) method

Phys. Rev. 116, 287 (1959)

Smooth part of wave funtion \U? — {Z CalPW, G)

Orthogonalize it with core electrons | ) = |¢) — 3 |).) (10| b)

Let’s write Eq. by @. H T) = E|D)
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Features of Vg
One can get by equating L.H.S with R.H.S.

k 1. Non-local potential
(H+Z(E T E{) % H?+1 ‘)‘U*’ — E|U1}
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2. Energy dependent

This gives a new view that @ feels the 3. For a linear transformation
following effective potential.
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* Positive in general The form of Eq. is invariant.
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Scattering by a spherical potential
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the phase shift coincides with the all electron case to first order.




Norm-conserving pseudopotential by Troullier and Matins

N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
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Putting u, into radial Schroedinger eq. and solving it with respect to V, we have
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Coy ~Cy, are determined by the following conditions:

« Norm-conserving condition within the cutoff radius
« The second derivatives of V ¢ s zero at r=0

« Equivalence of the derivatives up to 4™ orders of u, at the cutoff radius



Unscreeing and partial core correction (PCC)

Unscreeing

Since V(scr) contains effect of valence electrons, the ionic pseudopotential is
constructed by subtracting the effects.

Vi) = VD) = Vitarteeor) = Vielpo(r) + ppec(r)]

PCC “.’

Valence and PCC charges of carbon atom

In order take account of
the non-linearity of
exchange-correlation
term, it would be better
to include the partial
core correction.

—— Valence electron
— Partial core density

Electron density (a.u.)
o
P




Pseudopotentials by the TM method

Red: All electron calculation
Blue: Pseudopotential

Radial wave function of C2s  pseydopotential for C 2s and —4/r
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Separable pseudopotentials

Since the pseudopotential depends on the angular momentum I, it is non-local.

V(1) = Vipe(r, ')d(r — /) + VA (r, 1)
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The non-local potential is usually used as a separable form
due to the simplicity of calculations.

L Kleinman and D. M. Bylander, PRL 48, 1425 (1982).
P. E. Blochl, Phys. Rev. B 41, 5414 (1990).



Ultrasoft pseudopotential by Vanderbilt

D. Vanderbilt, PRB 41, 7892 (1990).

The phase shift is reproduced around multiple reference
energies by the following non-local operator.
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If the following generalized norm conserving condition is fulfilled,
the matrix B is Hermitian. Thus, in the case the operator V,, Is also
Hermitian.
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If Q=0, then B-B*=0



How the non-local operator works?

Operation of the non-local operator to pseudized wave function
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The matrix B and the generalized norm conserving condition

The matrix B is given by
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By performing the similar calculations, we obtain for the all electron wave functions
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By subtracting (2) from (1), we have the following relation.
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Norm-conserving pseudopotential by MBK

I. Morrion, D.M. Bylander, and L. Kleinman, PRB 47, 6728 (1993).

If Q;; = 0, the non-local operator can be transformed to a diagonal form.

] The form is exactly the
W = Z Bij|5:) same as that for the Blochl
expansion, resulting in no
— Z i) (o] need for modification of
OpenMX.

To satisfy Q;;=0, the pseudized wave function is written by
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The coefficients can be determined by matching up to the third derivatives to
those for the all electron, and Q;=0. Once c’s are determined,  is given by
1

2 :
) ty; ) I
{TT\IE}TT\IE +&ifi — Viec®i — 52 C; (r—) [?'Jf (r_uii)

= i c C




The form of MBK pseudopotentials

The pseudopotential is given by the sum of a local term V, . and non-local term V.

V=V (r)+V,,

The local term V,,. is independent of the angular channel I. On the other hand,
the non-local term V, is given by projectors

Vi = Zﬂ’u ‘aixai |

The projector consists of radial and spherical parts, and depends on species,
radial and I-channels.

Ioc



Relativistic pseudopotentials

By using the eigenfunctions of the spherical operator for the Dirac Eqg., one can
Introduce a relativistic pseudopotential as
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Optimization of pseudopotentials

(i) Choice of parameters

Optimization of PP
typically takes a half

1. Choice of valence electrons (semi-core included?) eek

2. Adjustment of cutoff radii by monitoring shape of
pseudopotentials —
Adustment of the local potential
4. Generation of PCC charge

w

|

(i) Comparison of logarithm derivatives No good

If the logarithmic derivatives
for PP agree well with those (ii1) Validation of quality of PP by performing
of the all electron potential, good a series of benchmark calculations.

go to the step (iii), or return —>

to the step (i).

good *

No good

Good PP



Comparison of logarithmic derivatives

Logarithmic derivatives of wave functions for s, p, d, and f channels for Mn atom. It is
found that the separable MBK is well compared with the all-electron. If there is a
deviation in the logarithmic derivatives, the band structure will not be reproduced.
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Energy (eV)

OpenMX vs. Wien2Kk In fcc Mn
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1D-Dirac equation with a spherical potential

1-dimensional radial Dirac equation for the majority component G is given by
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Solving the 1D-Dirac equation

By changing the variable r to x with 7 = ¢* , and applying a predictor and
corrector method, we can derive the following equations:

L&ill = 32L; —31L;_1 — d;l‘.(lﬂﬂ-'fé + 14M; 1) + d;l?g(ilﬂ-‘f; — Qﬂ-'f;_l],

MP, = —4M;+5M;_; + dz(4M] +2M]_,),
e dzx / For a given E, the L and M
M9 = M+ Z M - M, +5M\P) g ’ .
o 12 : 1) are solved from the origin and
Lﬁl = L;+ d — (8M; — M;_1 + J.q_.f?{iﬁl}_ distant region, and t_hey are
12 matched at a matching point.
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In All_Electron.c, the calculation is performed.



How to find eigenstates #1

If the chosen E is an eigenvalue, the following Eq. is hold:

Lo(rwvp)

Mo(rmp)

LI(?'MP) — i?"lrf(?'h-'IP) to the matching point.

So, if AD i1s zero, it turns out that the chosen E is the eigenvalue.

AD = Mo(rvp) — aMi(rvp)

In the right figure AD is plotted as a
function of E for a hydrogen atom.

Since the analytic solution for a
hydrogen atom is known,

we can confirm that the zeros of AD
correspond to the analytic eigenvalues/

Lo(rmp)

Li(rvp)

ryp 1S the radius corresponding

First excitéd stat¢

Ground state

ited state
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How to find eigenstates #2

The sign of AD varies at an eigenvalue.

|

Algorithm of searching an eigenvalue E

(1) Look for the regime where AD changes the sign
by scanning energy.

(2) The regime Is narrowed by a bisection method.

(3) Once a convergence criterion is fulfilled, an
eigenvalue is found




What we can do If we generate PPs by ourselves

It might be true that generating a good PP requires experiences more or less. So, it
would be better for beginners to use a well-developed database of PPs. However, if you
can generate PPs by yourself, you may be able to explore physics and chemistry by
controlling PPs as parameters in a model theory. For example, the following

calculations becomes possible.
1. Calculations of core-level binding energies

In order to calculate core-level binding energies measured by
XPS, we need to generate PPs including the targeted core states.

2. Impurity problem using a virtual atom

PPs having non-integer valence electrons can be used to study
effects of dilute impurity.

3. Mixing of PPs for different elements

It is not easy to identify how the character of elements affects
to properties of interest. By using a mixed PPs for different
elements, there is a possibility that one finds how the physical
property is governed by a specific character of elements.



Calculations of core-level binding energies

It is possible to calculate absolute binding

energies of core levels in molecules and = 25
I i= background | | ' | '
solids. To do that we have to generate a 5 oL shake up experiment —
proper PP including the targeted state. gL total i
5 15 . raw data N
RS | |
It is also important to develop the database % 10 — —
of PPs including core states which are well *@ sl ]
studied in experiments. g = .
o0 T
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Binding Energy (eV)
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= 25 | I | I | | |
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Impurity problem by a virtual atom

One of carbon atoms in the diamond unit cell including 8 carbon atoms is replaced

by a virtual atom having 4.2 valence electrons. The calculation corresponds to

C, gNg(=C49N,). Below is the DOS.
4 .

S'pin ub '

DOS (1/eV/spin)
o




Diamond vs. Graphene
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Diamond vs. Graphene from C to Si

Diamond
stabilized

Graphene

stabilized

=

.5

Using a PP for C,Siy.,, the energy difference is e ——
calculated in the diamond and graphene structures.

— ey

0.1 0,2 0.2 0.4 0.5 0.6 0.7 0.8 0.9

The portion of Sl In the virtual atom
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Pseudopotential generator: ADPACK

Welcome to OpenMX
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What is ADPACK?

ADPACK (Atomic Density functional program PACKage) is a software to
perform density functional calculations for a single atom

The features are listed below:

« All electron calculation by the Schrodinger or Dirac equation

* LDA and GGA treatment to exchange-correlation energy

* Finite element method (FEM) for the Schrodinger equation
 Pseudopotential generation by the TM, BHS, MBK schemes

* Pseudopotential generation for unbound states by Hamann's scheme
 Kleinman and Bylander (KB) separable pseudopotential

» Separable pseudopotential with Blochl multiple projectors

» Partial core correction to exchange-correlation energy

« Logarithmic derivatives of wave functions

» Detection of ghost states in separable pseudopotentials

» Scalar relativistic treatment

* Fully relativistic treatment with spin-orbit coupling

* Generation of pseudo-atomic orbitals under a confinement potential

The pseudopotentials and pseudo-atomic orbitals can be the input data for OpenMX.



Programs of ADPACK

Programs: 65 C rounties and 5 header files (50,000 lines)
Link: LAPACK and BLAS

Main routine: adpack.c
Input: readfile.c, Inputtool.c

Output: Output.c
All electron calculations: All_Electron.c, Initial _Density.c, Core.c

Numerical solutions for Schroedinger and Dirac eqs.: Hamming_I.c, Hamming_O.c

Density: Density.c, Density_PCC.c, Density_V.c
Exchange-Correlation: XC_CA.c, XC_EX.c, XC_PW91.c, XC_VWN.c, XC_PBE.c

Mixing: Simple_Mixing.c
Pseudopotentials: MBK.c, BHS.c, TM.c
Pseudo-atomic orbitals: Multiple_PAO.c

The global variables are declared in adpack.h.



Database (2013)

Database (2013) of optimized VPS and PAO

The database (2013) of fully relativistic pseudopotentials (VPS) and pseudo-atomic orbitals

(PAQ), generated by ADPACK., which could be an Fully relativistic pseudnpotentials
The data of elements with the underline are currentl
VPSS and PAO, in the program package, OpenhMX, {
openmx®.*/DFT_DATA13/VPS/ and openmx™.*/DFT
The delta factor of OpenMX with the database (201]

Fully relativistic pseudopotentials generated by the I
(PBE13) which contain a partial core correction ant

E Optimized VPS and PAO o Pt_CA13.vps
H are available, which

includes relativistic effect o Pt PBE13.vps
L Be with spin-orbit coupling.
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Close look at “vps” files #1

Input file

Fun s s ebbob o

Input file
B e g L e g e R gttt s gt sttt ttts]

it

BFile Hame

it

Swatem.CurrrentDir i ft default=./

awstemn. Name Pt _PBE13

Log.print OFF #t ON|OFF
gvstem.UseRestartfile wves B NO|YES, default=ND
avstem.Restartfile Pt PBE13 B default=rull

ft Calculation tvpe

pg.type dirac f schlsdirac|diras
calc.type ¥ps #oaLL|YPS| PO

K. tvpe G i LDA | GG

i

# dtam

it

htomSpecies T8

max .occupied.N ]

total .elect ron 8.0

valence.elect ron 16.0

<?ccupied.electrnns
2 2.0 RB.D |
1 1

==
==
oo
oo
=

=

.0 10.
6.0 10.
6.0 9.
n.0 0.
lectron

‘v"l:ll:ll:ll:l

.electrons

In the header part, the input file
for the ADPACK calculations
are shown, which maybe
helpful for the next generation
of pseudopotentials.



Eigenvalues for all electron calculation

Close look at “vps” files #2

Frifiiieriisiiiii ik inei e i e s e

Eizervalues (Hartree) in the all electron calculat ion
O Sl el e e e e

n=
=
n=
n=
n=
=
=
n=
n=
=
=
n=
n=
n=

COCACA O b b o fe DO QOO D D —

o2 — oD — OS] — O — O

- Zohio
-503
-414
-118

-394
-7
-20
-18

i=l1+1/%

-0H6443450359 355
-1 142921617334
154BE 70411121
0771871048125
-0 406459585 7966
-1 768324008852
3345514773071
0570286040002
1245371 454213
-45681 91344740
-BH526504468 7S
0410921 BAE76]
201 931 BH3 4267
2073945621 3222

-2oki.
-a03.
-2,
-114a.
-104.

-id.
-22.
-1

j=1-1/2

G464 439505435
114252 1617334
3720670651586
0771871045125
1310226714455
16291076 102345
3340801 4773071

-J6ZAR03002204
0257406345024
-0821 360560534
-BHE2E0 044687
- 433830 1B52EEE
- 2496568022815
2073456213222

The eigenvalues with
J=I=x=1/2 for the all
electron calculations by
the Dirac equation are
Included, which can be
used to estimate the
splitting by spin-orbit
coupling



Close look at “vps” files #3

Information for pseudopotentials

vps .t vpe ME
Aumber . vps 5
£pseudo JNandl
I 501 1.1000 0.0
] 52 1.7000 0.0
A E 0 2.0000 0.0
3 E 1 2.8000 0.0
4 0 2.8000 -0.1

pseudo. NandLs

£project .energies

:
I 1.00000000000000e+00
I 1.00000000000000e+00
] L00000000000000e+00
] L00000000000000e+00
2 =1.00000000000000e+00
i L00000000000000e+00
E L00000000000000e+00
I ENErgiess

z

The specification for the

pseudopotentials is
made by vps.type,
number.vps, and
pseudo.NandL.

The project energies A 1s shown as follows:

L0000000000000e+00
L00000000000000e+00
L00000000000000e+00
L00000000000000e+00
L00000000000000e+00
L00000000000000e+00
0000000000000 e+00



Close look at “vps” files #4

The generated pseudopotentials are output by Pseudo.Potentials

<Pseydo Potentials

-1.00000000000000e+01 4.5399928762484%-05  -1.5627 4493573701 e+01
1. 2901619173529Ye400 -3.535767A3162273e-04 -2. 7450152907 15068 e-04
-2 44B045T72803525e-08 4. 48045801 596636-08 5.09718838745471 0=e-08

-9.973535490981 9539 +00 4.56168218439265:-00 -1.5627 4493573701 e+01
1. 2901619175875 42400 -3.630540060427 43e-04 -2.81859221 925009 e-04
-2.57892987AE2848-08 4. 70277839806157e-08 5.37409931750746=-08

-9.947093196392 9e+00 4.786R331 2960476e-00  -1.5627 4493573701 e+01
1. 29016191783 448400 -3.72785244541990e-04 -2.8941 4129143262 e-04
-2.71903310082123-08  4.95826204925540.-08 5.6BR05322202532:-08

-9, 9206 4729458918400 4.914933238953605:-00  -1.5627 4493573701 e+01
1. 29016191809451e400  -3.82777317519373:e-04 -2.971715368271 /8e-04
-2. 8667475880582 e-08  5.227R2013305807e-08 5.973868734609548=-08

-9.89 49539278557 +00 5.04BR7228281931e-00 -1.56274493573701 e+01
1. 2901619183685 1400 -3.5930372163393 45:.-04 -3.051368 72 /EEE05e-04
-3.02248683064018-08  5.511B216B502627e-08 B.29540434038342=-08

-9, 867745490981 96 +00 5.181942453787 78 4e-00  -1.5627 4493573701 e+01
1. 29016191865 760400 -4.035721197606803.-04 -3.13315710232509e-04

O 1002 ar I arot - no E M1iNndAmMmoadinnda- no 0 cAanE?oeCc3?I MMin d- No

1st column: x

2" column: r=exp(x) in a.u.

3" column: radial part of local pseudopotential

4™ and later columns: radial part of non-local pseudopotentials.



Close look at “vps” files #5

Charge density for partial core correction

<density.PCC

-1.00000000000000e+01 4.5395923762484%9-05
-5.9735490931963%9+00 4.66163218439260=-050
-8.947093 196392 79e+00 4.7866331 2960 47E-05
3. 020647294555 18e+00 4.9149332385936R0e-05
-9.8941 983927805 Te+00 504667228281 9812-05
-9, 867745490981 96 e+00 5.181594243787 78 4e-050
-9.8412945891 7836e+00 5.320838351 42065E=-05
4. 81484368 737470e+00 5 .4R3457207REBEA2-00
—-5.7883827800671 14e+00 5 .E09898795 7526 1e-05
-4, 761841883767 04e+00 5.7B02655T953301e-05
~-8.730480958196393+00 5 .9146627R929530-05
—-89.7090 400801 B032e+00 B.0731983953636Ve-05
-9.682589178356 71 e+00 B.235598338363870e-05

=0 RRETDOOTRRERST] AN A1 oo AR 1R~ -NR

S411B07 B251530e-01
S411B07 B25153ke-01
SA11B07 E25130e-01
S411B07 B25153ke-01
411607 B2E130be-01
S411B07 B25153ke-01
411607 B2E130be-01
S411B07 B251530e-01
S411B07 B25153ke-01
S411B07 B251530e-01
S411B07 B25153ke-01
411607 B2E153be-01
S411B07 B25153ke-01

oAARNT R T AR~

o e e e e e
o e e e

1st column: x
2" column: r=exp(x) in a.u.
3" column: charge density for PCC



Outlook

B Although the development of PPs has a long history, and
nowadays databases containing high-quality PPs are available.
So, it would be better for beginners to use the well-developed
database.

B Nevertheless it is important to understand the theories of PPs
since this is a basis of current state-of-the-art technology in first-
principles calculations.

B Actually, OpenMX is based on norm-conserving
pseudopotentials developed by Morrison, Bylander, and
Kleinman, PRB 47, 6728 (1993).

B [f you can generate PPs by yourself, you may be able to explore
physics and chemistry by controlling PPs as parameters in a
model theory.



