
1. OPW method

2. PK type pseudopotential

3. Norm-conserving pseudopotential by TM

4. Ultra-soft pseudopotential by Vanderbilt

5. MBK pseudopotential

6. Solving the 1D Dirac eq. 

7. What we can do if we generate PPs by ourselves

8. On the vps file

Theories of pseudopotentials

Taisuke Ozaki (ISSP, Univ. of Tokyo) 

The Winter School on DFT: Theories and Practical Aspects, Dec. 19-23, CAS. 



Intuitive ideas of pseudopotentials 

1. Since core electrons is situated at 

energetically very deeper states, they 

are inert chemically. In molecules and 

solids, they do not change so largely.

2. Is there a way of constructing an 

effective potential consisting of the 

nucleus potential and Coulomb 

potential   given by the core electrons 

states calculated in advance ?

3. If the effective potential is much 

shallower than that of the true nucleus 

potential, it is expected that the 

calculation will become quite easier.  

Electronic structure of Si bulk

Science 351, aad3000 (2016).



OPW (Orthogonalized Plane Wave Method) method

C. Herring, Phys. Rev. 57, 1169 (1940)

i=c,v

It is assumed that         has been solved in advance.

It is easy to verify that 

By using the OPW as basis set, the number of 

basis functions can be reduced 

valence electrons oscillate near the 

vicinity of  nucleus because of the 

orthogonality with core electrons.is orthogonalized with         by



Phillips-Kleinman (PK) method

Phys. Rev. 116, 287 (1959)

Smooth part of wave funtion

Orthogonalize it with core electrons

Let’s write Eq. by Φ. 

One can get by equating L.H.S with R.H.S.

This gives a new view that Φ feels the 

following effective potential.

Positive in general

Veff is shallower than v.

1. Non-local potential

2. Energy dependent 

Features of Veff

3. For a linear transformation

The form of Eq. is invariant.

L.H.S R.H.S



Incident wave

Scattered wave

Phase shift

If the norm of pseudized wave is conserved within r0 and the 

logarithmic derivative coincides with that for the all electron case, 

the phase shift coincides with the all electron case to first order.
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Scattering by a spherical potential



Norm-conserving pseudopotential by Troullier and Matins

N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

For         ,  the following form is used.

Putting ul into radial Schroedinger eq. and solving it with respect to V, we have

c0 ～c12 are determined by the following conditions:

• Norm-conserving condition within the cutoff radius

• The second derivatives of V (scr) is zero at r=0   

• Equivalence of the derivatives up to 4th orders of ul at the cutoff radius



Unscreeing and partial core correction (PCC)

Since V(scr) contains effect of valence electrons, the ionic pseudopotential is 

constructed by subtracting the effects. 

Valence and PCC charges of carbon atom

In order take account of 

the non-linearity of 

exchange-correlation 

term, it would be better 

to include the partial 

core correction. 

Unscreeing

PCC



Pseudopotentials by the TM method

Radial wave function of C 2s Pseudopotential for C 2s and –4/r

Red:  All electron calculation

Blue: Pseudopotential 



Separable pseudopotentials

The non-local potential is usually used as a separable form 

due to the simplicity of calculations.

Since the pseudopotential depends on the angular momentum l, it is non-local.

P. E. Blochl, Phys. Rev. B 41, 5414 (1990).

L Kleinman and D. M. Bylander, PRL 48, 1425 (1982).



Ultrasoft pseudopotential by Vanderbilt
D. Vanderbilt, PRB 41, 7892 (1990). 

The phase shift is reproduced around multiple reference 

energies by the following non-local operator.

If the following generalized norm conserving condition is fulfilled, 

the matrix B is Hermitian. Thus, in the case the operator VNL is also 

Hermitian. 

If Q=0, then B-B*=0



How the non-local operator works?

Operation of the non-local operator to pseudized wave function

Note that

It turns out that the following Schroedinger equation is satisfied. 



The matrix B and the generalized norm conserving condition

The matrix B is given by 

Thus, we have 

By integrating by parts

By performing the similar calculations, we obtain for the all electron wave functions

・・・(1)

・・・(2)

By subtracting (2) from (1), we have the following relation.



Norm-conserving pseudopotential by MBK
I. Morrion, D.M. Bylander, and L. Kleinman, PRB 47, 6728 (1993).

If Qij = 0, the non-local operator can be transformed to a diagonal form.

The form is exactly the 

same as that for the Blochl

expansion, resulting in no 

need for modification of 

OpenMX. 

To satisfy Qij=0, the pseudized wave function is written by 

The coefficients can be determined by matching up to the third derivatives to 

those for the all electron, and Qij=0. Once  c’s are determined, χ is given by 



The form of MBK pseudopotentials

(ps)

loc NL( )V V r V 

The pseudopotential is given by the sum of a local term Vloc and non-local term VNL.

NL | |i i i

i

V    

The local term Vloc is independent of the angular channel l. On the other hand, 

the non-local term VNL is given by projectors

The projector consists of radial and spherical parts, and depends on species, 

radial and l-channels. 



Relativistic pseudopotentials

By using the eigenfunctions of  the spherical operator for the Dirac Eq., one can 

introduce a relativistic pseudopotential as



Optimization of pseudopotentials

1. Choice of valence electrons (semi-core included?)

2. Adjustment of cutoff radii by monitoring shape of 

pseudopotentials

3. Adustment of the local potential

4. Generation of PCC charge

(i) Choice of parameters

(ii) Comparison of logarithm derivatives

If the logarithmic derivatives 

for PP agree well with those 

of the all electron potential, 

go to the step (iii), or return 

to the step (i). 

(iii) Validation of quality of PP by performing 

a series of benchmark calculations.
good

No good

No good

good

Good PP

Optimization of PP 

typically takes a half 

week. 



Comparison of logarithmic derivatives
Logarithmic derivatives of wave functions for s, p, d, and f channels for Mn atom. It is 

found that the separable MBK is well compared with the all-electron. If there is a 

deviation in the logarithmic derivatives, the band structure will not be reproduced. 



OpenMX vs. Wien2k in fcc Mn



1D-Dirac equation with a spherical potential

1-dimensional radial Dirac equation for the majority component G is given by

Lの満たすべき条件

The mass term is given by 

By expressing the function G by the following form,

One obtain a set of equations: 

Minority component

The charge density is obtained from 



Solving the 1D-Dirac equation

By changing the variable r to x with                ,  and applying a predictor and 

corrector method, we can derive the following equations:  

L
M

For a given E, the L and M 

are solved from the origin and 

distant region, and they are 

matched at a matching point.

In All_Electron.c, the calculation is performed. 



How to find eigenstates #1

If the chosen E is an eigenvalue, the following Eq. is hold:

So, if  ΔD is zero, it turns out that the chosen E is the eigenvalue. 

In the right figure ΔD is plotted as a 

function of E for a hydrogen atom.

Since the analytic solution for a 

hydrogen atom is known, 

we can confirm that the zeros of ΔD 

correspond to the analytic eigenvalues/

rMP is the radius corresponding 

to the matching point. 

Second excited state

First excited state
Ground state



How to find eigenstates #2

The sign of ΔD varies at an eigenvalue.

Algorithm of searching an eigenvalue E

(1) Look for the regime where ΔD changes the sign 

by scanning energy.

(2) The regime is narrowed by a bisection method. 

(3) Once a convergence criterion is fulfilled, an 

eigenvalue is found



What we can do if we generate PPs by ourselves

1. Calculations of core-level binding energies

2. Impurity problem using a virtual atom 

3. Mixing of PPs for different elements

It might be true that generating a good PP requires experiences more or less. So, it 

would be better for beginners to use a well-developed database of PPs. However, if you 

can generate PPs by yourself, you may be able to explore physics and chemistry by 

controlling PPs as parameters in a model theory. For example, the following 

calculations becomes possible.  

In order to calculate core-level binding energies measured by 

XPS, we need to generate PPs including the targeted core states. 

PPs having non-integer valence electrons can be used to study 

effects of dilute impurity. 

It is not easy to identify how the character of elements affects 

to properties of interest. By using a mixed PPs for different 

elements, there is a possibility that one finds how the physical 

property is governed by a specific character of elements. 



Calculations of core-level binding energies

It is possible to calculate absolute binding 

energies of core levels in molecules and 

solids. To do that we have to generate a 

proper PP including the targeted state. 

It is also important to develop the database 

of PPs including core states which are well 

studied in experiments. 



Impurity problem by a virtual atom

One of carbon atoms in the diamond unit cell including 8 carbon atoms is replaced 

by a virtual atom having 4.2 valence electrons. The calculation corresponds to 

C7.8N0.2(=C39N1). Below is the DOS. 



Diamond vs. Graphene 

~0.1 eV

~0.5 eV



C Si

Diamond 

stabilized

Graphene 

stabilized
The portion of Si in the virtual atom

Diamond vs. Graphene from C to Si

Using a PP for CxSi(1-x) the energy difference is 

calculated in the diamond and graphene structures.



Pseudopotential generator: ADPACK

http://www.openmx-square.org/

The pseudopotential 

generator for OpenMX 

is available here.



What is ADPACK?

ADPACK (Atomic Density functional program PACKage) is a software to 

perform density functional calculations for a single atom 

•All electron calculation by the Schrödinger or Dirac equation

• LDA and GGA treatment to exchange-correlation energy

• Finite element method (FEM) for the Schrödinger equation

• Pseudopotential generation by the TM, BHS, MBK schemes

• Pseudopotential generation for unbound states by Hamann's scheme

• Kleinman and Bylander (KB) separable pseudopotential

• Separable pseudopotential with Blöchl multiple projectors

• Partial core correction to exchange-correlation energy

• Logarithmic derivatives of wave functions

• Detection of ghost states in separable pseudopotentials

• Scalar relativistic treatment

• Fully relativistic treatment with spin-orbit coupling 

• Generation of pseudo-atomic orbitals under a confinement potential

The features are listed below:

The pseudopotentials and pseudo-atomic orbitals can be the input data for OpenMX.



Programs of ADPACK

65 C rounties and 5 header files (50,000 lines)Programs:

Link:            LAPACK and BLAS

Main routine: adpack.c

All electron calculations: All_Electron.c, Initial_Density.c, Core.c 

Numerical solutions for Schroedinger and Dirac eqs.:Hamming_I.c, Hamming_O.c

Density: Density.c, Density_PCC.c, Density_V.c

Exchange-Correlation: XC_CA.c, XC_EX.c, XC_PW91.c, XC_VWN.c, XC_PBE.c

Mixing: Simple_Mixing.c

Pseudopotentials: MBK.c, BHS.c, TM.c

Pseudo-atomic orbitals: Multiple_PAO.c

The global variables are declared in adpack.h.

Input: readfile.c, Inputtool.c

Output: Output.c



Database (2013)

http://www.openmx-square.org/

Optimized VPS and PAO 

are available, which 

includes relativistic effect 

with spin-orbit coupling.



Close look at “vps” files #1

In the header part, the input file 

for the ADPACK calculations 

are shown, which maybe 

helpful for the next generation 

of pseudopotentials.

Input file



Close look at “vps” files #2

The eigenvalues with 

j=l±1/2 for the all 

electron calculations by 

the Dirac equation are 

included, which can be 

used to estimate the 

splitting by spin-orbit 

coupling

Eigenvalues for all electron calculation



Close look at “vps” files #3

The specification for the 

pseudopotentials is 

made by vps.type, 

number.vps, and 

pseudo.NandL.

Information for pseudopotentials

The project energies λ is shown as follows:



Close look at “vps” files #4

The generated pseudopotentials are output by Pseudo.Potentials

1st column: x

2nd column: r=exp(x) in a.u.

3rd column: radial part of local pseudopotential

4th and later columns: radial part of non-local pseudopotentials. 



Close look at “vps” files #5

Charge density for partial core correction

1st column: x

2nd column: r=exp(x) in a.u.

3rd column: charge density for PCC



Outlook

 Although the development of PPs has a long history, and 

nowadays databases containing high-quality PPs are available. 

So, it would be better for beginners to use the well-developed 

database.

 Nevertheless it is important to understand the theories of PPs 

since this is a basis of current state-of-the-art technology in first-

principles calculations. 

 Actually, OpenMX is based on norm-conserving 

pseudopotentials developed by Morrison, Bylander, and 

Kleinman, PRB 47, 6728 (1993). 

 If you can generate PPs by yourself, you may be able to explore 

physics and chemistry by controlling PPs as parameters in a 

model theory.


