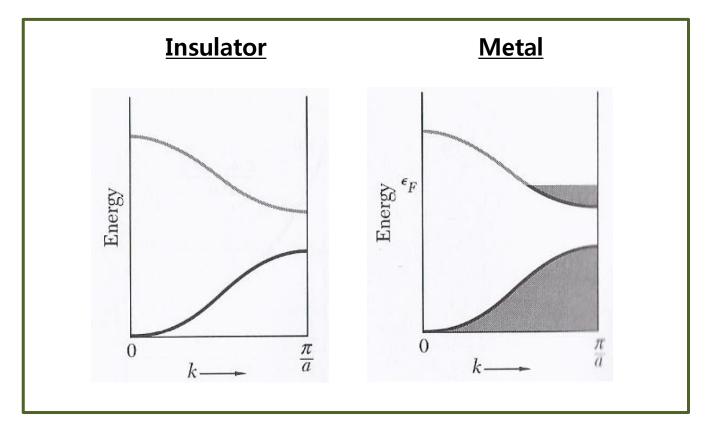
Electronic Structure of Correlated Materials: LDA+U, DMFT, and Others

Purpose:

Understanding the limitation of standard local approximations to describe the correlated electron systems

Understanding the basic idea of LDA+U and related methods

Suggested Reading:


R. G. Parr and W. Yang, "Density functional theory of atoms and molecules (OUP 1989)"

R. M. Martin, "Electronic structure: Basic theory and practical methods (CUP 2004)"

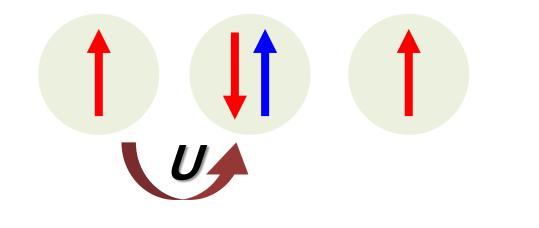
V. I. Anisimov et al., "Strong Coulomb correlations in electronic structure calculations: Beyond the local density approximation (Gordon & Breach 2000)"

Myung Joon Han (KAIST-Physics, mj.han@kaist.ac.kr)

Very Basic of Band Theory

Kittel, Introduction to Solid State Physics

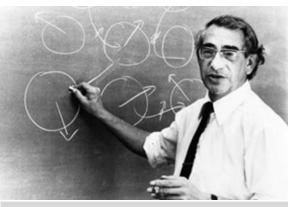
A material with partially-filled band(s) should be a metal


Insulator: Pauli and Mott

Pauli exclusion: band insulator

W. E. Pauli

Coulomb repulsion: Mott (-Hubbard) insulator



N. F. Mott Proc. Phys. Soc. London (1949)

Localized Orbital and Hubbard Model

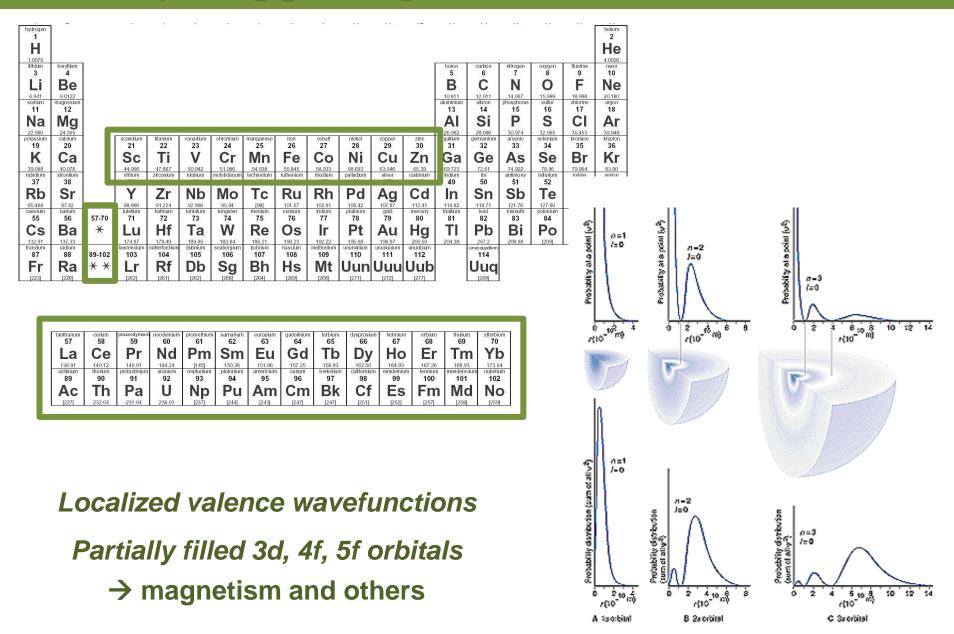
Hubbard Model (1964)


$$H = -\sum_{i,j,\sigma} t_{ij} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

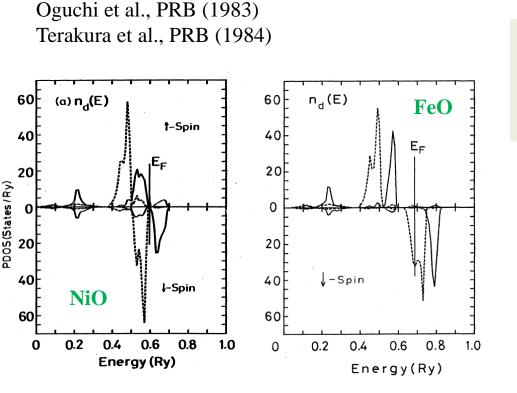
http://theor.jinr.ru/~kuzemsky/jhbio.html

'Hopping' term between the sites

On-site Coulomb repulsion in the correlated orbitals



Additional electron occupation requires the energy cost :


 $U = E(d^{n+1}) + E(d^{n-1}) - 2E(d^n)$

Imada, Fujimori, Tokura, Rev. Mod. Phys. (1998)

Actually Happening Quite Often

Applying LDA to Mott Insulators

✓ Too small or zero band gap

- \checkmark Magnetic moment underestimated
- ✓ Too large exchange coupling (Tc)

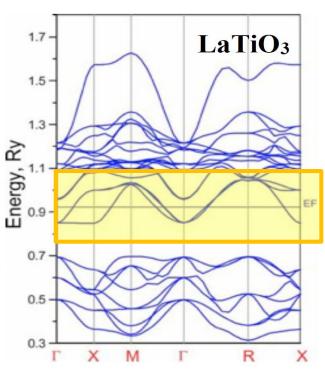


TABLE III. Experimental and theoretical exchange parameters (in K) of the first and the second neighbors.

MnO		MnS		NiO		
J_1	J_2	J_1	J_2	${J}_1$	J_2	Reference
	-7.0	- 8.0	-9.0	- 50	- 85	22
-9.0	-10.4					25
210				16	-222	26
- 10.0	-11.0					23
-28	-28					24
- 30.3	-29.8	-10	-27	61	-1230	present paper

Combining LDA with Hubbard Model

PHYSICAL REVIEW B

VOLUME 44, NUMBER 3

15 JULY 1991-I

Band theory and Mott insulators: Hubbard U instead of Stoner I

Vladimir I. Anisimov,* Jan Zaanen,[†] and Ole K. Andersen

Max-Planck-Institut für Festkörperforschung, D-7000 Stuttgart 80, Heisenbergstrasse 1, Federal Republic of Germany (Received 4 September 1990; revised manuscript received 5 March 1991)

We propose a form for the exchange-correlation potential in local-density band theory, appropriate for Mott insulators. The idea is to use the "constrained-local-density-approximation" Hubbard parameter U as the quantity relating the single-particle potentials to the magnetic- (and orbital-) order parameters. Our energy functional is that of the local-density approximation plus the mean-field approximation to the remaining part of the U term. We argue that such a method should make sense, if one accepts the Hubbard model and the success of constrained-local-density-approximation parameter calculations. Using this *ab initio* scheme, we find that all late-3*d*-transition-metal monoxides, as well as the parent compounds of the high- T_c compounds, are large-gap magnetic insulators of the charge-transfer type. Further, the method predicts that LiNiO₂ is a low-spin ferromagnet and NiS a local-moment *p*-type metal. The present version of the scheme fails for the early-3*d*-transition-metal monoxides and for the late 3*d* transition metals.

Basic idea: Introduce Hubbard-like term into the energy functional (and subtract the equivalent LDA term to avoid the double counting)

$$E_{LDA+U} = E_{LDA} + E_U - E_{dc}$$

where
$$E_U = rac{1}{2} \sum_{ilm\sigma} U n^{\sigma}_{ilm} n^{\sigma'}_{ilm'}$$

LDA+U Functional

The original functional form (Anisimov et al. 1991)

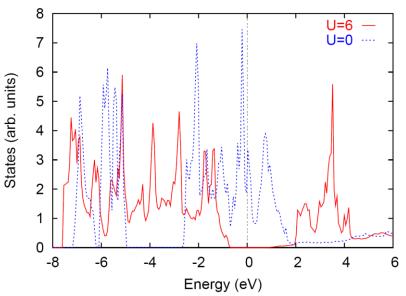
$$\begin{split} E = E^{\text{LDA}} + \frac{1}{2} \sum_{\substack{m,m',\sigma \\ m,m',\sigma \\ (m \neq m')}} U(n_{im\sigma} - n^0)(n_{im'\sigma} - n^0) \\ + \frac{1}{2} \sum_{\substack{m,m',\sigma \\ (m \neq m')}} (U - J)(n_{im\sigma} - n^0)(n_{im'\sigma} - n^0) \; . \end{split}$$

i : site index (orbitals)

n⁰ : average d-orbital occupation (no double counting correction)

J: Hund coupling constant

Orbital-dependent potential


$$V_{m\sigma} = U \sum_{m'} (n_{m'-\sigma} - n^0)$$

+ $(U - J) \sum_{m'(\neq m)} (n_{m'\sigma} - n^0) + V^{\text{LDA}}$

LDA+U Result

TABLE I. Calculated band gaps of MnO, FeO, CoO, and NiO as a function of \overline{U} values. Here we use the dual representation for the description of the on-site density matrix.

\bar{U} (eV)	MnO	FeO	CoO	NiO
0	0.04	0.00	0.00	0.36
2	1.68	0.76	1.20	1.56
4	2.12	1.96	2.20	2.53
6	4.21	2.77	3.01	3.89
Calc. (LSDA)	0.8 ^a	0.0 ^a	0.0 ^a	0.2 ^a
Calc. $(LDA+U)$	3.5 ^b	3.2 ^c	3.2 ^d	3.1 ^e
Expt.	3.6-3.8 ^f	2.4 ^g	2.4 ^h	$4.0^{i}, 4.3^{j}$

Wurtzite-structured CoO : *MJH* and Yu, JKPS (2006); JACS (2006)

	Mulliken			Voronoi			
\bar{U} (eV)	Full	Dual	On-site	Full	Dual	On-site	Other group results
0	1.30	1.30	1.30	1.28	1.28	1.28	$1.0 \ (\bar{U}=0.0)^{a}$
2	1.48	1.54	1.59	1.46	1.51	1.55	
4	1.59	1.66	1.71	1.55	1.61	1.66	
6	1.66	1.74	1.79	1.62	1.69	1.72	$1.59 \ (\bar{U}=6.9)^{b}$
Expt.							1.77 ^c , 1.64 ^d , 1.90 ^e

MJH, Ozaki and Yu PRB (2006)

Further Issues

✓ Rotational invariance and several different functional forms

$$E^{U}[\{n\}] = \frac{1}{2} \sum_{\{m\},\sigma} \{ \langle m, m'' | V_{ee} | m', m''' \rangle n^{\sigma}_{mm'} n^{-\sigma}_{m''m'''} + (\langle m, m'' | V_{ee} | m', m''' \rangle - \langle m, m'' | V_{ee} | m''', m' \rangle) n^{\sigma}_{mm'} n^{\sigma}_{m''m'''} \},$$

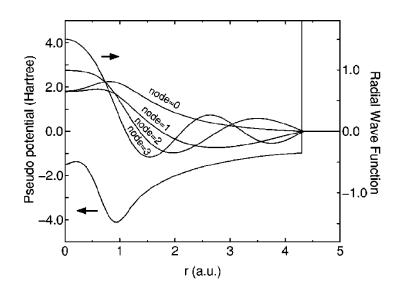
(So-called) fully localized limit: Liechtenstein et al. PRB (1995)

 $E_{\rm dc}[\{n^{\sigma}\}] = \frac{1}{2}Un(n-1) - \frac{1}{2}J[n^{\uparrow}(n^{\uparrow}-1) + n^{\downarrow}(n^{\downarrow}-1)]$

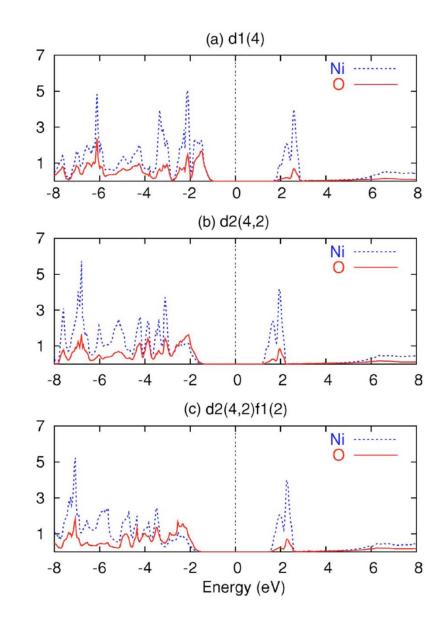
(So-called) around the mean field limit: Czyzyk et al. PRB (1994)

$$E^{\text{LSDA}+\text{AMF}} = E^{\text{LSDA}} + \frac{1}{2} \sum_{m,m',\sigma} U_{mm'} (n_{m\sigma} - n_{\sigma}^{0})$$

$$\times (n_{m'-\sigma} - n_{-\sigma}^{0})$$

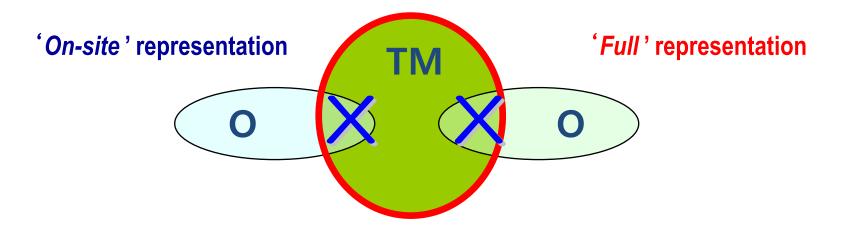

$$+ \frac{1}{2} \sum_{m,m',m\neq m',\sigma} (U_{mm'} - J_{mm'}) (n_{m\sigma} - n_{\sigma}^{0})$$

$$\times (n_{m'\sigma} - n_{\sigma}^{0}) . \qquad (3)$$


LDA+U based on LCPAO (1)

 Numerically generated (pseudo-) atomic orbital basis set:

Non-orthogonal multiple d-/forbitals with arbitrarily-chosen cutoff radii

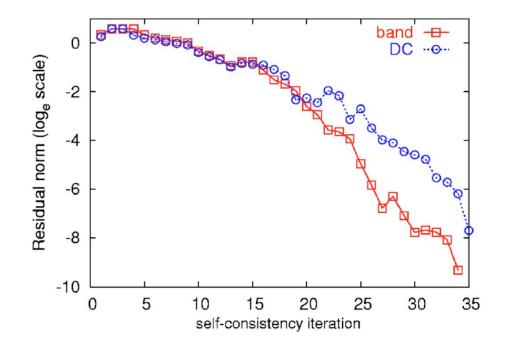

T. Ozaki, Phys. Rev. B (2003) *MJH*, Ozaki, Yu, Phys. Rev. B (2006)

LDA+U based on LCPAO (2)

✓ Non-orthogonality and no guarantee for the sum rule

See, for example, Pickett et al., (1998)

Proposed 'dual' representation:


Sum rule satisfied:

$$\hat{\rho}_{smm'}^{\sigma} = \frac{1}{2} (|s\tilde{m}\sigma\rangle\langle sm'\sigma| + |sm\sigma\rangle\langle s\tilde{m'\sigma}|)$$
$$\sum_{\sigma} Tr(n^{\sigma}) = \sum_{\sigma} \frac{1}{2} [Tr(S\rho^{\sigma}) + Tr(\rho^{\sigma}S)] = N_{ele}$$

where n^{σ} is the density matrix.

LDA+U based on LCPAO (3)

- ✓ LMTO: Anisimov et al. Phys. Rev. B (1991)
- ✓ FLAPW: Shick et al. Phys. Rev. B (1999)
- ✓ PAW: Bengone et al. Phys. Rev. B (2000)
- ✓ PP-PW: Sawada et al., (1997); Cococcioni et al., (2005)
- ✓ LCPAO and O(N) LDA+U: Large-scale correlated electron systems

MJH, Ozaki, Yu, Phys. Rev. B (2006)

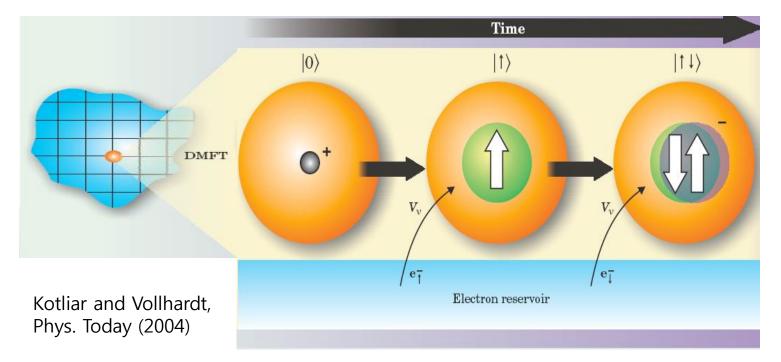
✓ How to determine the U and J values?

No fully satisfactory way to determine the key parameters

✓ How to define the double-counting energy functional?

Rotationally invariant versions, fully-local form, around the mean-field form, etc

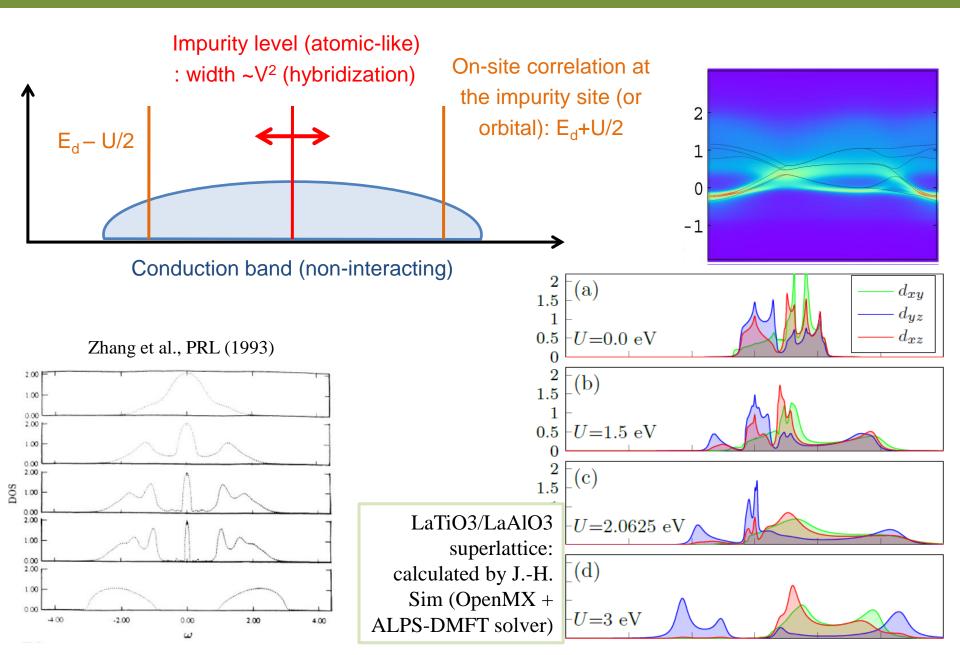
See, Anisimov et al. (1991); Czyzyk and Sawatzky (1994); Dudarev et al. (1998)


✓ It is a static Hartree-Fock method

The correlation effect beyond this static limit cannot be captured

→ Dynamical mean-field theory

Dynamical Correlation and DMFT

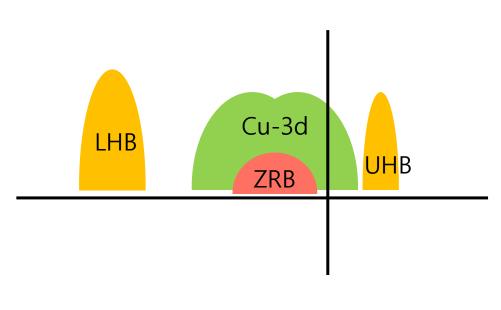

✓ Dynamical mean-field theory

Mapping 'Hubbard Hamilnoian' into 'Anderson Impurity Hamiltonian' plus 'self-consistent equation'

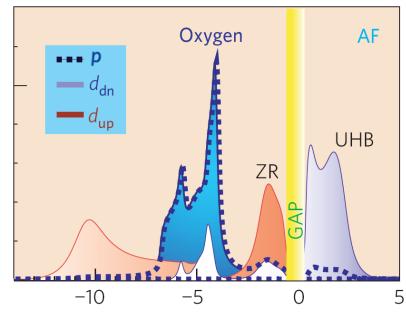
Georges and Kotliar Phys. Rev. B (1992) Georges et al., Rev. Mod. Phys.(1996); Kotliar et al., Rev. Mod. Phys.(2006);

DMFT Result

No on-site correlation (homogeneous electron gas)

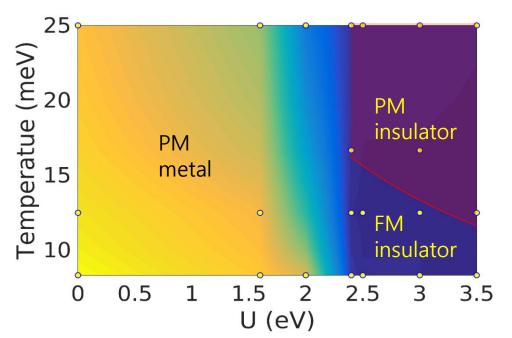

<u>LDA+U</u>

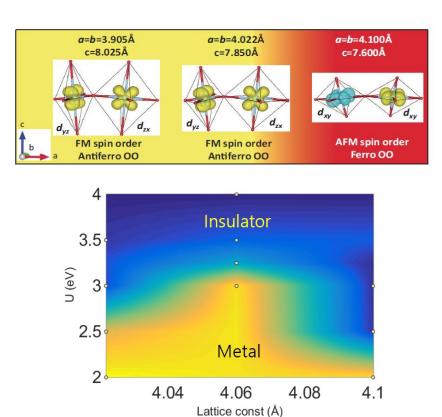
Hubbard-U correlation Static approximation



Hubbard-U correlation Dynamic correlation

Application to high-T_c cuprate

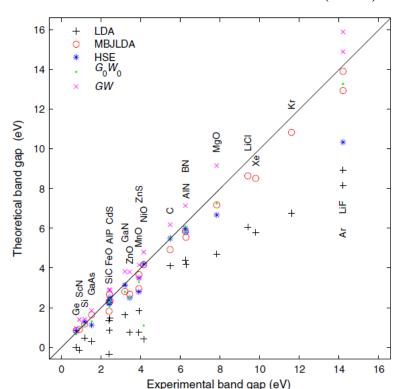

Weber et al., Nature Phys. (2010)



LDA+U and DMFT

- ✓ LDA+U is static (Hartree) approximation of DMFT →
- ✓ Temperature dependency
- ✓ Electronic property near the phase boundary
- ✓ Paramagnetic insulating and correlated metallic phase

LaTiO3/LaAlO3 superlattice: calculated by J.-H. Sim (OpenMX + ALPS-DMFT solver)



Other Methods

- ✓ Hybrid functionals, self-interaction correction, etc
 - Inclusion of atomic nature can always be helpful
 - 'Controllability' versus 'parameter-free'-ness
 - Hidden parameters (or factors)
 - Computation cost (\rightarrow relaxation etc)

(Self-consistent) GW

- Parameter-free way to include the welldefined self energy
- No way to calculate total energy, force,...etc
- Fermi liquid limit

Tran and Blaha, PRL (2009)