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Towards first-principle studies for industry
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102 atom

103 – 106 atom

Many applications done.

There are many successes 

even for material design.

DFT calculations of thousands atoms

is still a grand challenge.

O(N3)            Low-order

DNA Battery

Steel



Materials properties

 Materials properties of actual materials are determined by intrinsic

properties and secondary properties arising from inhomogeneous 

structures such as grain size, grain boundary, impurity, and precipitation. 

 In use of actual materials, the materials properties can be maximized by 

carefully designing the crystal structure and higher order of structures . 

http://ev.nissan.co.jp/LEAF/P

ERFORMANCE/

e.g., the coercivity of a permanent magnet of 

Nd-Fe-B is determined by crystal structure, grain 

size, and grain boundary. 



Experimental analysis of inhomogeneous materials

e.g. Grain boundary of a Nd-Fe-B permanent magnet

Hono@NIMS

3D atom probeTEM

Around 

grain 

boundary



K(京)-Computer:  10 Peta flops machine

CPU: SPARC64 VIIIfx, 

2GHz quad cores (128 GFLOPS)

2 processors/node

80000 nodes = 640,000 cores

Memory: 1 Peta Byte 



Development of computing power

Milkyway2

Successor of 

Milkyway2
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How large systems can be treated by Exa machines?

K-computer Exa machine

10 PFLOPS 1000 PFLOPS

The performance increase is only 100 times. 

Computational 

Scaling O(Np)
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The applicability of the O(N3) DFT method is extended to 

only 5 times larger systems.



Two routes towards O(N) DFT

Conventional 

representation

Density matrix

representation

Wannier function

representation

ψ: KS orbital

ρ: density

φ: Wannier function

n: density matrix



Density functionals as a functional of ρ

Density functionals can be rewritten by the first order reduced density matrix: ρ

where the electron density is given by ρ



Locality of Wannier functions

O-2px in PbTiO3
An orbital in Aluminum

Exponential decay

Decay almost follows a power low 

J.Battacharjee and U.W.Waghmare, PRB 73, 121102 (2006)



Locality of density matrix

Finite gap systems

exponential decay

Metals

T=0 power law decay

0<T exponential decay

D.R.Bowler et al., 

Modell.Siml.Mater.Sci.Eng.5, 199 (1997)



Various linear scaling methods

Wannier functions (WF)

Density matrix (DM)

Variational (V)

Perturbative (P)

At least four kinds of linear-scaling methods can be 

considered as follows:

DM+PDM+V

Orbital 

minimization 
by Galli, Parrinello, 

and Ordejon

Hoshi

Mostofi
Density matrix
by Li and Daw

Krylov subspace
Divide-conquer

Recursion

Fermi operator

WF+V WF+P



O(N) DFT codes

OpenMX: (Krylov)  Ozaki (U. of Tokyo) et al.

Conquest: (DM)  Bowler(London), Gillan(London), 

Miyazaki (NIMS)

Siesta: (OM)  Ordejon et al.(Spain)              

ONETEP: (DM) Hayne et al.(Imperial)

FEMTECK: (OM) Tsuchida (AIST)

FreeON: (DM) Challacombe et al.(Minnesota)



Basic idea behind the O(N) method

Assumption

Local electronic structure of each atom is mainly determined 

by neighboring atomic arrangement producing chemical 

environment.



Convergence by the DC method

Insulators, semi-conductors

Just solve the truncated clusters → Divide-Conquer method

W.Yang, PRL 66, 1438 (1991)

Metals

For metals, a large cluster size is required for the convergence.

→ Difficult for direct application of the DC method for metals



TO, PRB 74, 245101 (2006)

O(N) Krylov subspace method

Two step mapping of the whole Hilbert space into subspaces



Development of Krylov subspace vectors

|K0> |K1> |K5>

The Krylov vector is generated by a multiplication of H by |K>, 

and the development of the Krylov subspace vectors can be 

understood as hopping process of electron. 

The information on environment can be included from near sites 

step by step, resulting in reduction of the dimension.



Generation of Krylov subspaces

The ingredients of generation of Krylov subspaces is 

to multiply |Wn) by S-1H. The other things are made only 

for stabilization of the calculation.

Furthermore, in order to assure the S-orthonormality of the 

Krylov subspace vectors, an orthogonal transformation is 

performed by 

For numerical stability, it is crucial to generate 

the Krylov subspace at the first SCF step.



Embedded cluster problem

Taking the Krylov subspace representation, the cluster eigenvalue

problem is transformed to a standard eigenvalue problem as:

where HK consists of the short and long range contributions.

updated fixed

Green:   core region

Yellow: buffer region

• The embedded cluster is under the Coulomb interaction from the other parts.

• The charge flow from one embedded cluster to the others is allowed.



Relation between the Krylov subspace 

and Green’s funtion

A Krylov subspace is defined by

A set of q-th Krylov vectors contains up to information of (2q+1)th moments.

Definition of moments

The moment representation of G(Z) gives us the relation. 

One-to-one correspondence between the dimension of Krylov subspace 

and the order of moments can be found from above consideration.



Convergence property

The accuracy and efficiency can be controlled by the size of 

truncated cluster and dimension of Krylov subspace.

In general, the convergence property is more complicated.

See PRB 74, 245101 (2006).



Comparison of computational time

Carbon diamond

The computational time of calculation for each cluster does not depend

on the system size. Thus, the computational time is O(N) in principle. 



Parallelization

How one can partition atoms to minimize 

communication and memory usage?

Requirement: 

• Locality

• Same computational 

cost

• Applicable to any 

systems

• Small computational 

overhead

T.V.T. Duy and T. Ozaki, CPC 185, 777 (2014).

Recursive atomic 

partitioning



Modified recursive bisection

If the number of MPI processes is 19, then the following binary 

tree structure is constructed. 

In the conventional recursive bisection, the bisection is made so that 

a same number can be assigned to each region. However, the 

modified version bisects with weights as shown above.



Reordering of atoms by an inertia tensor



Diamond 16384 atoms, 19 processes

Allocation of atoms to processes

Multiply connected CNT, 16 processes



Parallel efficiency on K

The parallel efficiency is 68 % using 131,072 cores.

Diamond structure consisting 

of 131,072 atoms



Applications of the O(N) method

1. Interface structure between BCC Iron and carbides

2. Desolvation of Li+

3. Electronic transport of graphene nanoribbon

H. Sawada et al., Modelling Simul. Mater. Sci. Eng. 21, 045012 (2013).

T. Ohwaki et al., J. Chem. Phys. 136, 134101 (2012).

T. Ohwaki et al., J. Chem. Phys. 140, 244105 (2014).

M. Ohfuchi et al.,  Appl. Phys. Express 7, 025101 (2014).

H Jippo, T Ozaki, S Okada, M Ohfuchi, J. Appl. Phys. 120, 154301 (2016).



Coherent

precipitation

Semicoherent

precipitation

Incoherent

precipitation

Precipitation in bcc-Fe

Precipitating materials:

TiC, VC, NbC

In collaboration wit Dr. Sawada (Nippon Steel)

Pure iron is too soft as structural 

material. Precipitation of carbide 

can be used to control the hardness 

of iron.  
HRTEM image
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Resistance force and precipitate diameter
Y. Kobayashi, J. Takahashi and K. Kawakami, Scripta Mater. 67 (2012) 854

Diameter of precipitates R (nm)



Expt.

2.2nm

Crossover from coherent to semi-coherent

H. Sawada et al., Modelling Simul. Mater. Sci. 

Eng. 21, 045012 (2013).



■ Objective

Design of interfaces for fast-charge Li-ion batteries

Free-energy barrier of 

desolvation of Li+ in anode-

electrolyte interface under 

charging condition is one of key 

factors.

→ Theoretical calculation of free-

energy barrier of the desolvation 

is a powerful  tool for interface 

design.

Free-Energy Analysis on Desolvation of Li+

T. Ohwaki et al., J. Chem. Phys. 136, 134101 (2012).

T. Ohwaki et al., J. Chem. Phys. 140, 244105 (2014).



■ Method

Simulation

O(N)-MD calc. with bias imposed by ESM

method（constant-N）:
→ Observation of desolvation process

Analysis

Blue-moon ensemble method: 

→ O(N)-MD calc. with constraint on z-

coordinate of Li+

→ Mean force along z-axis

→ Free energy profile (barrier) for solvated 

Li+ approaching the surface

z

FIG. Calculation model of H-Si(111) 

anode-PC solvent with Li+ interface (389 

atoms).

Simulations of desolvation of Li+
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Desolvation of Li+: 

gradually decreasing 

coordination num. as 

approaching the surface

Energy Barrier: 

in change of 

coordination num. from 

3 to 2 

Height of Energy 

Barrier:

7.0 kcal/mol

◆ Desolvation process of Li+ and its free-energy barrier obtained 

from O(N)-FPMD calculations with bias-control technique.

Free-Energy Analysis on Desolvation of Li+

Energy Barrier:

7.0 kcal/mol



Summary

 To investigate realistic materials such as Li ion battery, magnets, 

and structural materials, development of low-order scaling DFT 

methods is crucial even in the Exa FLOPS era. 

 The locality of density matrix and basis function is a key to 

develop a wide variety of efficient electronic structure methods. 

 We have developed a linear scaling method, low-order scaling 

method, and O(N) nearly exact exchange functional based on 

the quantum nearsightedness.  

 We expect that such low-order scaling methods will be widely 

used to address realistic problems on massively parallel 

computers.


