Localized basis methods in OpenMX

- Introduction of OpenMX
- Implementation of OpenMX
 - ➢ Total energy
 - Pseudopotentials
 - Basis functions
- Δ -gauge

Taisuke Ozaki (ISSP, Univ. of Tokyo) Nov. 23rd, OpenMX hands-on workshop in KAIST

OpenMX Open source package for Material eXplorer

- Software package for density functional calculations of molecules and bulks
- Norm-conserving pseudopotentials (PPs)
- Variationally optimized numerical atomic basis functions

Basic functionalities

- SCF calc. by LDA, GGA, DFT+U
- Total energy and forces on atoms
- Band dispersion and density of states
- Geometry optimization by BFGS, RF, EF
- Charge analysis by Mullken, Voronoi, ESP
- Molecular dynamics with NEV and NVT ensembles
- Charge doping
- Fermi surface
- Analysis of charge, spin, potentials by cube files
- Database of optimized PPs and basis funcitons

Extensions

- O(N) and low-order scaling diagonalization
- Non-collinear DFT for non-collinear magnetism
- Spin-orbit coupling included self-consistently
- Electronic transport by non-equilibrium Green function
- Electronic polarization by the Berry phase formalism
- Maximally localized Wannier functions
- Effective screening medium method for biased system
- Reaction path search by the NEB method
- Band unfolding method
- STM image by the Tersoff-Hamann method
- etc.

History of OpenMX

- 2000 Start of development
- 2003 Public release (GNU-GPL)
- 2003 Collaboration: AIST, NIMS, SNU KAIST, JAIST, Kanazawa Univ. CAS, UAM NISSAN, Fujitsu Labs. etc.

2015 18 public releases Latest version: 3.8

About 400 papers published using OpenMX

Welcome to OpenMX

Contents

What's new

OpenMX Hands-On Workshop on 10th Oct. in Kobe Patch (Ver.3.7.8) to OpenMX Ver. 3.7 (17/Feb/2014) Release of OpenFFT Ver. 1.0 (04/Sep/2013)

- What is OpenMX?
- <u>Download</u>
- Manual
- <u>Technical Notes</u>
- Publications
- OpenMX Forum
- Workshop
- Database of VPS and PAO Ver. 2013
- ADPACK
- <u>Miscellaneous informations</u>
- <u>Contributors</u>
- Acknowledgment
- Links

http://www.openmx-square.org

Developers of OpenMX

- T. Ozaki (U.Tokyo)
- H. Kino (NIMS)
- J. Yu (SNU)
- M. J. Han (KAIST)
- M. Ohfuti (Fujitsu)
- T. Ohwaki (Nissan)
- H. Weng (CAS)
- M. Toyoda (Osaka Univ.)
- H. Kim (SNU)
- P. Pou (UAM)
- R. Perez (UAM)
- M. Ellner (UAM)

- T. V. Truong Duy (U.Tokyo)
- C.-C. Lee (Univ. of Tokyo))
- Y. Okuno (Fuji FILM)
- Yang Xiao (NUAA)
- F. Ishii (Kanazawa Univ.)
- K. Sawada (RIKEN)
- Y. Kubota (Kanazawa Univ.)
- Y.P. Mizuta (Kanazawa Univ.)
- M. Kawamura (Univ. of Tokyo)
- K. Yoshimi (Univ. of Tokyo)

Materials studied by OpenMX

First characterization of silicene on ZrB₂ in collaboration with experimental groups

A. Fleurence et al., Phys. Rev. Lett. 108, 245501 (2012).

First identification of Jeff=1/2 Mott state of Ir oxides

B.J. Kim et al., Phys. Rev. Lett. 101, 076402 (2008).

Theoretical proposal of topological insulators

C.-H. Kim et al., Phys. Rev. Lett. 108, 106401 (2012). H. Weng et al., Phy. Rev. X 4, 011002 (2014).

First-principles molecular dynamics simulations for Li ion battery

T. Ohwaki et al., J. Chem. Phys. 136, 134101 (2012).T. Ohwaki et al., J. Chem. Phys. 140, 244105 (2014).

Magnetic anisotropy energy of magnets

Z. Torbatian et al., Appl. Phys. Lett. 104, 242403 (2014).I. Kitagawa et al., Phys. Rev. B 81, 214408 (2010).

Electronic transport of graphene nanoribbon on surface oxidized Si

H. Jippo et al., Appl. Phys. Express 7, 025101 (2014).M. Ohfuchi et al., Appl. Phys. Express 4, 095101 (2011).

Interface structures of carbide precipitate in bcc-Fe

H. Sawada et al., Modelling Simul. Mater. Sci. Eng. 21, 045012 (2013).

Universality of medium range ordered structure in amorphous metal oxides

K. Nishio et al., Phys. Rev. Lett. 340, 155502 (2013).

Materials treated so far

Silicene, graphene Carbon nanotubes Transition metal oxides Topological insulators Intermetallic compounds Molecular magnets Rare earth magnets Lithium ion related materials Structural materials etc.

About 400 published papers

Implementation of OpenMX

- Density functional theory
- Mathematical structure of KS eq.
- LCPAO method
- Total energy
- Pseudopotentials
- Basis functions

Density functional theory

The energy of non-degenerate ground state can be expressed by a functional of electron density. (Hohenberg and Kohn, 1964)

$$E[\rho] = \int \rho(\mathbf{r})v(\mathbf{r})d + T[\rho] + J[\rho] + E_{\mathrm{xc}}[\rho]$$

The many body problem of the ground state can be reduced to an one-particle problem with an effective potential. (Kohn-Sham, 1965)

 $\hat{H}_{\rm KS}\phi_i = \varepsilon_i \phi_i$

W.Kohn (1923-)

$$\hat{H}_{\rm KS} = -\frac{1}{2}\nabla^2 + v_{\rm eff}$$
$$v_{\rm eff} = v_{\rm ext}(\mathbf{r}) + v_{\rm Hartree}(\mathbf{r}) + \frac{\delta E_{\rm xc}}{\delta\rho(\mathbf{r})}$$

Mathematical structure of KS eq.

3D coupled non-linear differential equations have to be solved self-consistently.

Input charge = Output charge \rightarrow Self-consistent condition

LCPAO method

(Linear-Combination of Pseudo Atomic Orbital Method)

One-particle KS orbital

$$\psi_{\sigma\mu}^{(\mathbf{k})}(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{n}^{N} e^{i\mathbf{R}_{n}\cdot\mathbf{k}} \sum_{i\alpha} c_{\sigma\mu,i\alpha}^{(\mathbf{k})} \phi_{i\alpha}(\mathbf{r}-\tau_{i}-\mathbf{R}_{n}),$$

is expressed by a linear combination of atomic like orbitals in the method.

$$\phi(\mathbf{r}) = Y_l^m(\hat{\mathbf{r}})R(r)$$

Features:

- It is easy to interpret physical and chemical meanings, since the KS orbitals are expressed by the atomic like basis functions.
- It gives rapid convergent results with respect to basis functions due to physical origin. (however, it is not a complete basis set, leading to difficulty in getting full convergence.)
- The memory and computational effort for calculation of matrix elements are O(N).
- It well matches the idea of linear scaling methods.

Total energy Pseudopotentials Basis functions

Implementation: Total energy (1)

The total energy is given by the sum of six terms, and a proper integration scheme for each term is applied to accurately evaluate the total energy.

 $E_{\text{tot}} = E_{\text{kin}} + E_{\text{ec}} + E_{\text{ee}} + E_{\text{xc}} + E_{\text{cc}} = E_{\text{kin}} + E_{\text{na}} + E_{\text{ec}}^{(\text{NL})} + E_{\delta \text{ee}} + E_{\text{xc}} + E_{\text{scc}}.$

 $E_{\rm kin} = \sum_{\sigma} \sum_{n}^{N} \sum_{i \alpha, j \beta} \rho_{\sigma, i \alpha j \beta}^{(\rm R_n)} h_{i \alpha j \beta, \rm kin}^{(\rm R_n)}$. Kinetic energy
$$\begin{split} E_{\rm ec} &= \underbrace{E_{\rm ec}^{(\rm L)}}_{\sigma} + E_{\rm ec}^{(\rm NL)}, \quad \text{Coulomb energy with external potential} \\ &= \sum_{\sigma} \sum_{n}^{N} \sum_{i\alpha, i\beta} \rho_{\sigma, i\alpha j\beta}^{(\rm R_n)} \langle \phi_{i\alpha}(\mathbf{r} - \tau_i) | \sum_{I} V_{\rm core, I}(\mathbf{r} - \tau_I) | \phi_{j\beta}(\mathbf{r} - \tau_j - \mathbf{R}_n) \rangle \end{split}$$
+ $\sum_{\sigma} \sum_{\mathbf{n}}^{N} \sum_{i\alpha,j\beta} \rho_{\sigma,i\alpha j\beta}^{(\mathbf{R}_{\mathbf{n}})} \langle \phi_{i\alpha}(\mathbf{r}-\tau_{i}) | \sum_{I} V_{\mathrm{NL},I}(\mathbf{r}-\tau_{I}) | \phi_{j\beta}(\mathbf{r}-\tau_{j}-\mathbf{R}_{\mathbf{n}}) \rangle,$ $E_{\rm ee} = \frac{1}{2} \int dr^3 n(\mathbf{r}) V_{\rm H}(\mathbf{r}),$ Hartree energy $= \frac{1}{2} \int dr^3 n(\mathbf{r}) \{ V_{\rm H}^{(a)}(\mathbf{r}) + \delta V_{\rm H}(\mathbf{r}) \},$ $E_{\rm xc} = \int dr^3 \{ n_{\uparrow}({\bf r}) + n_{\downarrow}({\bf r}) + n_{\rm pcc}({\bf r}) \} \epsilon_{\rm xc} (n_{\uparrow} + \frac{1}{2}n_{\rm pcc}, n_{\downarrow} + \frac{1}{2}n_{\rm pcc}), \qquad {\rm Exchange-correlation}$ energy $E_{\rm cc} = \frac{1}{2} \sum_{I,I} \frac{Z_I Z_J}{|\tau_I - \tau_I|}$. Core-core Coulomb energy TO and H.Kino, PRB 72, 045121 (2005)

Implementation: Total energy (2)

The reorganization of Coulomb energies gives three new energy terms.

$$E_{\rm ec}^{(L)} + E_{\rm ee} + E_{\rm cc} = E_{\rm na} + E_{\delta \rm ee} + E_{\rm scc},$$

The neutral atom energy

$$E_{\text{na}} = \int dr^3 n(\mathbf{r}) \sum_{I} V_{\text{na},I}(\mathbf{r} - \tau_{I}), \qquad \begin{array}{l} \text{Short range and separable to two-center integrals} \\ = \sum_{\sigma} \sum_{n}^{N} \sum_{i\alpha,j\beta} \rho_{\sigma,i\alphaj\beta}^{(\mathbf{R}_{n})} \sum_{I} \langle \phi_{i\alpha}(\mathbf{r} - \tau_{i}) | V_{\text{na},I}(\mathbf{r} - \tau_{I}) | \phi_{j\beta}(\mathbf{r} - \tau_{j} - \mathbf{R}_{n}) \rangle, \end{array}$$

Difference charge Hartree energy

$$E_{\delta ee} = \frac{1}{2} \int dr^3 \delta n(\mathbf{r}) \delta V_{\mathrm{H}}(\mathbf{r}),$$

Long range but minor contribution

Screened core-core repulsion energy

$$E_{\rm scc} = \frac{1}{2} \sum_{I,J} \left[\frac{Z_I Z_J}{|\tau_I - \tau_J|} - \int dr^3 n_I^{(a)}(\mathbf{r}) V_{\mathrm{H},J}^{(a)}(\mathbf{r}) \right].$$
 Short range and two-center integrals

Difference charge

Neutral atom potential

$$\delta n(\mathbf{r}) = n(\mathbf{r}) - n^{(\mathbf{a})}(\mathbf{r}),$$

= $n(\mathbf{r}) - \sum_{i} n_{i}^{(\mathbf{a})}(\mathbf{r}),$

$$V_{\mathrm{na},I}(\mathbf{r}-\tau_I) = V_{\mathrm{core},I}(\mathbf{r}-\tau_I) + V_{\mathrm{H},I}^{(\mathrm{a})}(\mathbf{r}-\tau_I).$$

Implementation: Total energy (3)

So, the total energy is given by

$$E_{\text{tot}} = E_{\text{kin}} + E_{\text{na}} + E_{\text{ec}}^{(\text{NL})} + E_{\delta\text{ee}} + E_{\text{xc}} + E_{\text{scc}}.$$

Each term is evaluated by using a different numerical grid with consideration on accuracy and efficiency.

Two center integrals

Fourier-transformation of basis functions

$$\begin{split} \tilde{\phi}_{i\alpha}(\mathbf{k}) &= \left(\frac{1}{\sqrt{2\pi}}\right)^{3} \int dr^{3} \phi_{i\alpha}(\mathbf{r}) \mathrm{e}^{-i\mathbf{k}\cdot\mathbf{r}} \\ &= \left(\frac{1}{\sqrt{2\pi}}\right)^{3} \int dr^{3} Y_{lm}(\hat{\mathbf{r}}) R_{pl}(r) \left\{ 4\pi \sum_{L=0}^{\infty} \sum_{M=-L}^{L} (-i)^{L} j_{L}(kr) Y_{LM}(\hat{\mathbf{k}}) Y_{LM}^{*}(\hat{\mathbf{r}}) \right\}, \\ &= \left(\frac{1}{\sqrt{2\pi}}\right)^{3} 4\pi \sum_{L=0}^{\infty} \sum_{M=-L}^{L} (-i)^{L} Y_{LM}(\hat{\mathbf{k}}) \int dr r^{2} R_{pl}(r) j_{L}(kr) \int d\theta d\phi \sin(\theta) Y_{lm}(\hat{\mathbf{r}}) Y_{LM}^{*}(\hat{\mathbf{r}}), \\ &= \left[\left(\frac{1}{\sqrt{2\pi}}\right)^{3} 4\pi (-i)^{l} \int dr r^{2} R_{pl}(r) j_{L}(kr) \right] Y_{lm}(\hat{\mathbf{k}}), \\ &= \tilde{R}_{pl}(k) Y_{lm}(\hat{\mathbf{k}}), \end{split}$$
 Integrals for angular parts are analytically

 $\begin{array}{ll} \mathbf{e.g., overlap integral} \\ \langle \phi_{i\alpha}(\mathbf{r}) | \phi_{j\beta}(\mathbf{r} - \tau) \rangle &= \int dr^3 \phi_{i\alpha}^*(\mathbf{r}) \phi_{j\beta}(\mathbf{r} - \tau), \end{array} \\ performed. Thus, we only have to perform one-dimensional integrals along the radial direction. \\ &= \int dr^3 \left(\frac{1}{\sqrt{2\pi}}\right)^3 \int dk^3 \tilde{R}_{pl}^*(k) Y_{lm}^*(\hat{\mathbf{k}}) \mathrm{e}^{-\mathbf{i}\mathbf{k}\cdot\mathbf{r}} \left(\frac{1}{\sqrt{2\pi}}\right)^3 \int dk'^3 \tilde{R}_{p'l'}(k') Y_{l'm'}(\hat{\mathbf{k}}') \mathrm{e}^{\mathbf{i}\mathbf{k}'\cdot(\mathbf{r}-\tau)}, \\ &= \left(\frac{1}{2\pi}\right)^3 \int dk^3 \int dk'^3 \mathrm{e}^{-\mathbf{i}\mathbf{k}'\cdot\tau} \tilde{R}_{pl}^*(k) Y_{lm}^*(\hat{\mathbf{k}}) \tilde{R}_{p'l'}(k') Y_{l'm'}(\hat{\mathbf{k}}') \int dr^3 \mathrm{e}^{\mathbf{i}(\mathbf{k}'-\mathbf{k})\cdot\mathbf{r}}, \\ &= \int dk^3 \mathrm{e}^{-\mathbf{i}\mathbf{k}\cdot\tau} \tilde{R}_{pl}^*(k) Y_{lm}^*(\hat{\mathbf{k}}) \tilde{R}_{p'l'}(k) Y_{l'm'}(\hat{\mathbf{k}}), \end{array}$

Cutoff energy for regular mesh

The two energy components $\mathbf{E}_{\delta ee} + \mathbf{E}_{xc}$ are calculated on real space regular mesh. The mesh fineness is determined by plane-wave cutoff energies.

scf.energycutoff

The cutoff energy can be related to the mesh fineness by the following eqs.

$$E_{\text{cut}}^{(1)} = \frac{1}{2}\mathbf{g}\mathbf{b}_1 \cdot \mathbf{g}\mathbf{b}_1, \quad E_{\text{cut}}^{(2)} = \frac{1}{2}\mathbf{g}\mathbf{b}_2 \cdot \mathbf{g}\mathbf{b}_2, \quad E_{\text{cut}}^{(3)} = \frac{1}{2}\mathbf{g}\mathbf{b}_3 \cdot \mathbf{g}\mathbf{b}_3,$$

$$\mathbf{g}\mathbf{a}_1 = \frac{\mathbf{a}_1}{N_1}, \quad \mathbf{g}\mathbf{a}_2 = \frac{\mathbf{a}_2}{N_2}, \quad \mathbf{g}\mathbf{a}_3 = \frac{\mathbf{a}_3}{N_3},$$

 $\mathbf{gb}_1 = 2\pi \frac{\mathbf{ga}_2 \times \mathbf{ga}_2}{\Delta V}, \quad \mathbf{gb}_2 = 2\pi \frac{\mathbf{ga}_3 \times \mathbf{ga}_1}{\Delta V}, \quad \mathbf{gb}_2 = 2\pi \frac{\mathbf{ga}_1 \times \mathbf{ga}_2}{\Delta V},$

 $\Delta V = \mathbf{g}\mathbf{a}_1 \cdot \left(\mathbf{g}\mathbf{a}_2 \times \mathbf{g}\mathbf{a}_3\right),$

Forces

Total energy Pseudopotentials Basis functions

Norm-conserving Vanderbilt pseudopotential

I. Morrion, D.M. Bylander, and L. Kleinman, PRB 47, 6728 (1993).

(:)

The following non-local operator proposed by Vanderbilt guarantees that scattering properties are reproduced around multiple reference energies.

D. Vanderbilt, PRB 41, 7892 (1990).

$$V_{\rm NL} = \sum_{i,j} B_{ij} |\beta_i\rangle \langle\beta_j|$$

$$|\chi_i\rangle = V_{\rm NL}^{(i)} |\phi_i\rangle = (\varepsilon_i - T - V_{\rm loc}) |\phi_i\rangle$$
$$B_{ij} = \langle \phi_i |\chi_j\rangle$$
$$|\beta_i\rangle = \sum_j (B^{-1})_{ji} |\chi_j\rangle$$

PP

If the following generalized norm-conserving condition is fulfilled, the matrix B is Hermitian, resulting in that V_{NL} is also Hermitian.

$$Q_{ij} = \langle \psi_i | \psi_j \rangle_R - \langle \phi_i | \phi_j \rangle_R \qquad \text{If Q=0, then B-B*=0} \\ B_{ij} - B_{ji}^* = (\varepsilon_i - \varepsilon_j) Q_{ij} \qquad \text{This is the norm-conserving} \\ \text{used in OpenMX} \end{cases}$$

Non-local potentials by Vanderbilt

Let's operate the non-local potential on a pseudized wave function:

$$\begin{split} \hat{v}^{(\mathrm{NL})} |\phi_{k}^{(\mathrm{PS})}\rangle &= \sum_{ij} |\beta_{i}\rangle B_{ij} \langle \beta_{j} |\phi_{k}^{(\mathrm{PS})}\rangle \\ &= \sum_{ij} |\beta_{i}\rangle B_{ij} \sum_{k'} \left(B^{-1}\right)_{k'j} \langle \chi_{k'} |\phi_{k}^{(\mathrm{PS})}\rangle, \quad \text{Noting the following relations:} \\ &= \sum_{ij} |\beta_{i}\rangle B_{ij} \sum_{k'} \left(B^{-1}\right)_{k'j} B_{kk'}, \quad \forall^{(\mathrm{SL})}(r) = v_{\mathrm{L}}(r) + v_{\mathrm{H}}^{(\mathrm{v})}(r) + v_{\mathrm{xc}}^{(\mathrm{v}+\mathrm{pcc})}(r). \\ &= \sum_{ij} |\beta_{i}\rangle B_{ij} \delta_{kj}, \quad \forall^{(\mathrm{SL})}(r) = v_{\mathrm{L}}(r) + v_{\mathrm{H}}^{(\mathrm{v})}(r) + v_{\mathrm{xc}}^{(\mathrm{v}+\mathrm{pcc})}(r). \\ &\Rightarrow |\chi_{i}\rangle = \left(\varepsilon_{i} + \frac{1}{2}\nabla^{2} - v^{(\mathrm{SL})}(r)\right) |\phi_{i}^{(\mathrm{PS})}\rangle, \\ &= \sum_{i} \left(\sum_{j} \left(B^{-1}\right)_{ji} |\chi_{j}\rangle\right) B_{ik}. \quad B_{ij} = \langle \phi_{i}^{(\mathrm{PS})} |\chi_{j}\rangle \\ &= |\chi_{k}\rangle \quad |\beta_{i}\rangle = \sum_{j} \left(B^{-1}\right)_{ji} |\chi_{j}\rangle. \end{split}$$

It turns out that the following Schrodinger eq. is hold.

$$\left(-\frac{1}{2}\nabla^2 + v^{(\mathrm{SL})}(r) + \hat{v}^{(\mathrm{NL})}\right) |\phi_i^{(\mathrm{PS})}\rangle = \varepsilon_i |\phi_i^{(\mathrm{PS})}\rangle.$$

Generalized norm-conserving conditions Q_{ij}

In the Vanderbilt pseudopotential, B is given by

$$B_{ij} = \int_0^{r_c} dr P_i^{(PS)}(r) \left(\varepsilon_j + \frac{1}{2} \frac{d^2}{dr^2} - \frac{l(l+1)}{2r^2} - v^{(SL)}(r) \right) P_j^{(PS)}(r),$$

$$B_{ji}^* = \int_0^{r_c} dr P_i^{(PS)}(r) \left(\varepsilon_i + \frac{1}{2} \frac{d^2}{dr^2} - \frac{l(l+1)}{2r^2} - v^{(SL)}(r) \right) P_j^{(PS)}(r),$$

Thus, we have

$$B_{ij} - B_{ji}^* = (\varepsilon_j - \varepsilon_i) \int_0^{r_c} dr P_i^{(PS)}(r) P_j^{(PS)}(r) + \frac{1}{2} \int_0^{r_c} dr P_i^{(PS)}(r) P_j^{\prime\prime(PS)}(r) - \frac{1}{2} \int_0^{r_c} dr P_i^{\prime\prime(PS)}(r) P_j^{(PS)}(r).$$

By integrating by parts, this can be transformed as

$$B_{ij} - B_{ji}^{*} = (\varepsilon_{j} - \varepsilon_{i}) \langle \phi_{i}^{(\text{PS})} | \phi_{j}^{(\text{PS})} \rangle_{r_{c}} + \frac{1}{2} \left[P_{i}^{(\text{PS})}(r) P_{j}^{\prime(\text{PS})}(r) \right]_{0}^{r_{c}} - \frac{1}{2} \left[P_{i}^{\prime(\text{PS})}(r) P_{j}^{(\text{PS})}(r) \right]_{0}^{r_{c}},$$

$$= (\varepsilon_{j} - \varepsilon_{i}) \langle \phi_{i}^{(\text{PS})} | \phi_{j}^{(\text{PS})} \rangle_{r_{c}} + \frac{1}{2} P_{i}^{(\text{PS})}(r_{c}) P_{j}^{\prime(\text{PS})}(r_{c}) - \frac{1}{2} P_{i}^{\prime(\text{PS})}(r_{c}) P_{j}^{(\text{PS})}(r_{c}). \quad \cdots (1)$$

As well, the similar calculations can be performed for all electron wave functions.

$$0 = (\varepsilon_j - \varepsilon_i) \langle \phi_i^{(AE)} | \phi_j^{(AE)} \rangle_{r_c} + \frac{1}{2} P_i^{(AE)}(r_c) P_j'^{(AE)}(r_c) - \frac{1}{2} P_i'^{(AE)}(r_c) P_j^{(AE)}(r_c).$$
(2)

By subtracting (2) from (1), we obtain a relation between B and Q.

$$B_{ij} - B_{ji}^* = (\varepsilon_i - \varepsilon_j) \left(\langle \phi_i^{(AE)} | \phi_j^{(AE)} \rangle_{r_c} - \langle \phi_i^{(PS)} | \phi_j^{(PS)} \rangle_{r_c} \right).$$

Norm-conserving pseudopotential by MBK

I. Morrion, D.M. Bylander, and L. Kleinman, PRB 47, 6728 (1993).

If $Q_{ij} = 0$, the non-local terms can be transformed to a diagonal form.

$$V_{\rm NL} = \sum_{i,j} B_{ij} |\beta_i\rangle \langle\beta_j|,$$
$$= \sum_i \lambda_i |\alpha_i\rangle \langle\alpha_i|$$

The form is equivalent to that obtained from the Blochl expansion for TM norm-conserving pseudopotentials. Thus, common routines can be utilized for the MBK and TM pseudopotentials, resulting in easiness of the code development.

To satisfy $Q_{ij}=0$, pseudofunctions are now given by

$$\phi_i = \phi_{\mathrm{TM},i} + f_i \quad f_i = \sum_{i=0} c_i \left[r j_l \left(\frac{r}{r_c} u_{li} \right) \right]$$

The coefficients {c} are determined by agreement of derivatives and $Q_{ij}=0$. Once a set of {c} is determined, χ is given by

$$\chi_i = V_{\rm TM}^{(i)} \phi_{\rm TM,i} + \varepsilon_i f_i - V_{\rm loc} \phi_i - \frac{1}{2} \sum_i c_i \left(\frac{u_{li}}{r_c}\right)^2 \left[r j_l \left(\frac{r}{r_c} u_{li}\right)\right]$$

Pseudo-wave funtion and psedopotential of carbon atom

Red: All electron calculation Blue: Pseudized calculation

Optimization of pseudopotentials

Comparison of logarithmic derivatives

Comparison of band structure for fcc Mn

Total energy Pseudopotentials Basis functions

Primitive basis functions

1. Solve an atomic Kohn-Sham eq. under a confinement potential:

$$V_{\text{core}}(r) = \begin{cases} -\frac{Z}{r} & \text{for } r \leq r_1 \\ \sum_{n=0}^{3} b_n r^n & \text{for } r_1 < r \leq r_c \\ h & \text{for } r_c < r, \end{cases}$$

- 2. Construct the norm-conserving pseudopotentials.
- 3. Solve ground and excited states for the the peudopotential for each L-channel.

In most cases, the accuracy and efficiency can be controlled by

Cutoff radius Number of orbitals

PRB 67, 155108 (2003) PRB 69, 195113 (2004)

Convergence with respect to basis functions

The two parameters can be regarded as variational parameters.

Benchmark of primitive basis functions

Dimer	Expt.	Calc.	Dimer	Expt.	Calc.
H_2 (H4.5-s2)	${}^{1}\Sigma_{g}^{+a}$	${}^{1}\Sigma_{g}^{+}(1s\sigma_{g}^{2})$	K ₂ (K10.0-s2p2)	${}^{1}\Sigma_{g}^{+}f$ ${}^{1}\Sigma^{+}k$	$^{1}\Sigma_{g}^{+} \left(3p\pi_{g}^{4}3p\sigma_{u}^{2}4s\sigma_{g}^{2}\right)$
He_2 (He7.0-s2)	${}^{1}\Sigma_{g}^{+ a}$ ${}^{1}\Sigma_{g}^{+ b}$	${}^{1}\Sigma_{g}^{+}$ $(1s\sigma_{g}^{2}1s\sigma_{u}^{2})$	CaO (Ca7.0- $s2p2d2$)	${}^{1}\Sigma^{\neq k}$	$\Sigma^{+}(s\sigma^{2}s\sigma^{2}p\pi^{4})$
Li ₂ (Li8.0-s2)	${}^{1}\Sigma_{g}^{+}c$	${}^{1}\Sigma_{g}^{+}(2s\sigma_{g}^{2})$	ScO (Sc7.0- $s2p2d2$)	$2\Sigma + l$	$^{2}\Sigma^{+}$ $(d\pi^{4}s\sigma^{2}s\sigma^{1})$
BeO (Be6.0-s2p2)	${}^{1}\Sigma^{+} d$	${}^{1}\Sigma^{+} (s\sigma^{2}s\sigma^{2}p\pi^{4})$	Ti ₂ (Ti7.0-s2p2d2)	$^{3}\Delta_{g}^{m}$	$^{3}\Delta_{g} \left(4s\sigma_{g}^{2}3d\sigma_{g}^{1}3d\pi_{u}^{4}3d\delta_{g}^{1}\right)$
B_2 (B5.5-s2p2)	${}^{3}\Sigma_{g}^{-e}$	${}^{3}\Sigma_{g}^{-}\left(2s\sigma_{g}^{2}2s\sigma_{u}^{2}2\pi_{u}^{2}\right)$	V ₂ (V7.5-s2p2d2)	${}^{3}\Sigma_{g}^{-n}$	${}^{1}\Sigma_{g}^{+} (4s\sigma_{g}^{2}3d\sigma_{g}^{2}3d\pi_{u}^{4}3d\delta_{g}^{2})$
C_2 (C5.0-s2p2)	${}^{1}\Sigma_{g}^{+}f$	${}^{1}\Sigma_{g}^{+}(2s\sigma_{g}^{2}2s\sigma_{u}^{2}2p\pi_{u}^{4})$	V_2 (V7.5-s4p4d4f2)	${}^{3}\Sigma_{g}^{-n}$	${}^{3}\Sigma_{g}^{-} (4s\sigma_{g}^{2}3d\sigma_{g}^{2}3d\pi_{u}^{4}3d\delta_{g}^{2})$
N_2 (N5.0-s2p2)	${}^{1}\Sigma_{g}^{+}f$	${}^{1}\Sigma_{g}^{+} \left(2s\sigma_{u}^{2}2p\pi_{u}^{4}2p\sigma_{g}^{2}\right)$	Cr_2 (Cr7.0-s2p2d2)	${}^{1}\Sigma_{a}^{+} {}^{o}$	${}^{1}\Sigma_{a}^{+} (4s\sigma_{a}^{2}3d\sigma_{a}^{2}3d\pi_{u}^{4}3d\delta_{a}^{4})$
O_2 (O5.0-s2p2)	${}^{3}\Sigma_{g}^{n} f$	${}^{3}\Sigma_{g}^{2} (2p\sigma_{g}^{2}2p\pi_{u}^{4}2p\pi_{g}^{2})$	MnO (Mn7.0-s2p2d2)	$^{6}\Sigma^{+}p$	${}^{6}\Sigma^{+}(d\sigma^{1}d\pi^{4}d\delta^{2}d\pi^{*2})$
F_2 (F5.0-s2p2)	${}^{1}\Sigma_{g}^{\downarrow}f$	${}^{1}\Sigma_{g}^{+}(2p\sigma_{g}^{2}2p\pi_{u}^{4}2p\pi_{g}^{4})$	Fe_2 (Fe7.0- $s2p2d2$)	$^{7}\Delta_{u}^{q}$	$^7\Delta_u \ (4s\sigma_g^2 3d\sigma_g^2 3d\sigma_u^1 3d\pi_u^4 3d\pi_g^2 3d\delta_g^3 3d\delta_u^2)$
Ne_2 (Ne7.0-s2p2)	${}^{1}\Sigma_{g}^{+}g$	${}^{1}\Sigma_{\sigma}^{+}(2p\pi_{u}^{4}2p\pi_{a}^{4}2p\sigma_{u}^{2})$	Co_2 (Co7.0-s2p2d2)		${}^{5}\Delta_{g} \left(4s\sigma_{q}^{2}3d\sigma_{q}^{2}3d\sigma_{u}^{1}3d\pi_{u}^{4}3d\pi_{q}^{2}3d\delta_{q}^{4}3d\delta_{u}^{3}\right)$
Na_2 (Na9.0-s2p2)	${}^{1}\Sigma_{g}^{+}f$	${}^{1}\Sigma_{q}^{+}(2p\pi_{q}^{4}2p\sigma_{u}^{2}3s\sigma_{q}^{2})$	Ni ₂ (Ni7.0-s2p2d2)	Ω^r	${}^{3}\Sigma_{a}^{-}$ $(4s\sigma_{a}^{2}3d\sigma_{a}^{2}3d\sigma_{u}^{2}3d\pi_{u}^{4}3d\pi_{a}^{2}3d\delta_{a}^{4}3d\delta_{u}^{4})$
MgO (Mg7.0-s2p2)	${}^{1}\Sigma^{\downarrow h}$	${}^{1}\Sigma^{+}(s\sigma^{2}s\sigma^{2}p\pi^{4})$	Cu_2 (Cu7.0- $s2p2d2$)	${}^{1}\Sigma_{g}^{+s}$	${}^{1}\Sigma_{q}^{+}$ $(4s\sigma_{q}^{2}3d\sigma_{q}^{2}3d\sigma_{u}^{2}3d\pi_{u}^{4}3d\pi_{q}^{4}3d\delta_{q}^{4}3d\delta_{u}^{4})$
Al ₂ (Al6.5-s2p2)	${}^{3}\Pi_{u} i$	${}^{3}\Sigma_{g}^{-}(3s\sigma_{g}^{2}3s\sigma_{u}^{2}3p\pi_{u}^{2})$	ZnH (Zn7.0-s2p2d2)	${}^{2}\Sigma_{g}^{+t}$	$^{2}\Sigma_{q}^{+}(s\sigma^{2}s\sigma^{*1}d\sigma^{2}d\pi^{4}d\delta^{4})$
Al ₂ (Al6.5-s4p4d2)	${}^{3}\Pi_{u} i$	${}^{3}\Sigma_{g}^{-}$ $(3s\sigma_{g}^{2}3s\sigma_{u}^{2}3p\pi_{u}^{2})$	GaH (Ga7.0-s2p2)	${}^{1}\Sigma^{+}u$	${}^{1}\Sigma^{+}(s\sigma^{2}s\sigma^{*2})$
Si ₂ (Si6.5-s2p2)	${}^{3}\Sigma_{g}^{-f}$	${}^{3}\Pi_{u}(3s\sigma_{u}^{2}3s\sigma_{g}^{1}3p\pi_{u}^{3})$	GeO (Ge7.0- $s2p2$)	${}^{1}\Sigma^{+}f$	$^{1}\Sigma^{+}$ (ss σ^{2} sp σ^{2} pp π^{4} pp σ^{2})
Si ₂ (Si6.5-s2p2d1)	${}^{3}\Sigma_{g}^{-}f$	${}^{3}\Sigma_{g}^{-}(3s\sigma_{u}^{2}3p\pi_{u}^{2}3s\sigma_{g}^{2})$	As ₂ (As7.0-s2p2d1)	${}^{1}\Sigma_{g}^{+}f$	${}^{1}\Sigma_{g}^{+}$ $(4s\sigma_{g}^{2}4s\sigma_{u}^{2}4p\sigma_{g}^{2}4p\pi_{u}^{4})$
P_2 (P6.0-s2p2d1)	${}^{1}\Sigma_{g}^{+}f$	${}^{1}\Sigma_{g}^{+}(3s\sigma_{u}^{2}3p\sigma_{g}^{2}3p\pi_{u}^{4})$	Se_2 (Se7.0-s2p2d1)	${}^{3}\Sigma_{a}^{-f}$	${}^{3}\Sigma_{a}^{-}$ $(4s\sigma_{a}^{2}4s\sigma_{u}^{2}4p\sigma_{a}^{2}4p\pi_{u}^{4}4p\pi_{a}^{2})$
S_2 (S6.0-s2p2)	${}^{3}\Sigma_{g}^{-}f$	${}^{3}\Sigma_{g}^{-}(3p\sigma_{g}^{2}3p\pi_{u}^{4}3p\pi_{g}^{2})$	Br_2 (Br7.0-s2p2d1)	${}^{1}\Sigma_{g}^{+}f$	${}^{1}\Sigma_{q}^{+} (4s\sigma_{q}^{2}4s\sigma_{u}^{2}4p\sigma_{q}^{2}4p\pi_{u}^{4}4p\pi_{q}^{4})$
Cl_2 (Cl6.0-s2p2d2)	${}^{1}\Sigma_{g}^{+}f$	${}^{1}\Sigma_{g}^{+} (3p\sigma_{g}^{2}3p\pi_{u}^{4}3p\pi_{g}^{4})$	Kr ₂ (Kr7.0-s2p2)	${}^{1}\Sigma_{g}^{+} v$	${}^{1}\Sigma_{g}^{+} (4s\sigma_{g}^{2}4s\sigma_{u}^{2}4p\sigma_{g}^{2}4p\sigma_{u}^{2}4p\pi_{u}^{4}4p\pi_{g}^{4})$
Ar ₂ (Ar7.0-s2p2)	${}^{1}\Sigma_{g}^{+}j$	${}^{1}\Sigma_{g}^{+} (3p\pi_{u}^{4}3p\pi_{g}^{4}3p\sigma_{u}^{2})$		-	

Ground state calculations of dimer using primitive basis functions

All the successes and failures by the LDA are reproduced by the modest size of basis functions (DNP in most cases)

Variational optimization of basis functions

One-particle wave functions

 $\psi_{\mu}(\mathbf{r}) = \sum_{i\alpha} c_{\mu,i\alpha} \phi_{i\alpha}(\mathbf{r} - \mathbf{r}_i)$

Contracted orbitals

$$\phi_{i\alpha}(\mathbf{r}) = \sum_{q} a_{i\alpha q} \chi_{i\eta}(\mathbf{r})$$

The variation of E with respect to c with fixed a gives

$$\partial E_{\text{tot}} / \partial c_{\mu,i\alpha} = 0 \longrightarrow \sum_{j\beta} \langle \phi_{i\alpha} | \hat{H} | \phi_{j\beta} \rangle c_{\mu,j\beta} = \varepsilon_{\mu} \sum_{j\beta} \langle \phi_{i\alpha} | \phi_{j\beta} \rangle c_{\mu,j\beta}$$

Regarding c as dependent variables on a and assuming KS eq. is solved self-consistently with respect to c, we have

$$\frac{\partial E_{\text{tot}}}{\partial a_{i\alpha q}} = \frac{\delta E_{\text{tot}}}{\delta \rho(\mathbf{r})} \frac{\delta \rho(\mathbf{r})}{\delta a_{i\alpha q}}$$
$$= 2 \sum_{j\beta} \left(\Theta_{i\alpha,j\beta} \langle \chi_{i\eta} | \hat{H} | \phi_{j\beta} \rangle - E_{i\alpha,j\beta} \langle \chi_{i\eta} | \phi_{j\beta} \rangle \right)$$

Ozaki, PRB 67, 155108 (2003)

Optimization of basis functions

1. Choose typical chemical environments

2. Optimize variationally the radial functions

3. Rotate a set of optimized orbitals within the subspace, and discard the redundant functions

Database of optimized VPS and PAO

Database (2013) of optimized VPS and PAO

The database (2013) of fully relativistic pseudopotentials (VPS) and pseudo-atomic orbitals (PAO), generated by ADPACK, which could be an input data of program package, OpenMX. The data of elements with the underline are currently available. When you use these data, VPS and PAO, in the program package, OpenMX, then copy them to the directory, openmx*.*/DFT_DATA13/VPS/ and openmx*.*/DFT_DATA13/PAO/, respectively. The delta factor of OpenMX with the database (2013) is found at <u>here</u>.

E		Pub	lic r	eleas	se of	opti	mize	d and	d wel	l tes	ted V	VPS	and	PAO	so		
Н	•															<u>He</u>	
Li	<u>Be</u>											<u>B</u>	<u>C</u>	<u>N</u>	<u>0</u>	E	<u>Ne</u>
<u>Na</u>	Mg											<u>AI</u>	<u>Si</u>	P	<u>s</u>	<u>CI</u>	<u>Ar</u>
K	<u>Ca</u>	<u>Sc</u>	<u>Ti</u>	V	<u>Cr</u>	<u>Mn</u>	<u>Fe</u>	<u>Co</u>	<u>Ni</u>	<u>Cu</u>	<u>Zn</u>	<u>Ga</u>	<u>Ge</u>	<u>As</u>	<u>Se</u>	<u>Br</u>	<u>Kr</u>
<u>Rb</u>	<u>Sr</u>	Y	<u>Zr</u>	<u>Nb</u>	<u>Mo</u>	<u>Tc</u>	<u>Ru</u>	<u>Rh</u>	<u>Pd</u>	<u>Ag</u>	<u>Cd</u>	<u>In</u>	<u>Sn</u>	<u>Sb</u>	<u>Te</u>	I	<u>Xe</u>
<u>Cs</u>	<u>Ba</u>	L	<u>Hf</u>	<u>Ta</u>	W	<u>Re</u>	<u>Os</u>	<u>Ir</u>	<u>Pt</u>	<u>Au</u>	<u>Hg</u>	ΤI	<u>Pb</u>	<u>Bi</u>	<u>Po</u>	At	<u>Rn</u>
Fr	Ra	А															
	L	La	Ce	Pr	Nd	Pm	<u>Sm</u>	Eu	Gd	Tb	Dу	<u>Ho</u>	Er	Tm	Yb	<u>Lu</u>	
	А	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Reproducibility in DFT calcs

RESEARCH ARTICLE

Science 351, aad3000 (2016)

DFT METHODS

Reproducibility in density functional theory calculations of solids

Kurt Lejaeghere,¹* Gustav Bihlmayer,² Torbjörn Björkman,^{3,4} Peter Blaha,⁵ Stefan Blügel,² Volker Blum,⁶ Damien Caliste,^{7,8} Ivano E. Castelli,⁹ Stewart J. Clark,¹⁰ Andrea Dal Corso,¹¹ Stefano de Gironcoli,¹¹ Thierry Deutsch,^{7,8} John Kay Dewhurst,¹² Igor Di Marco,¹³ Claudia Draxl,^{14,15} Marcin Dułak,¹⁶ Olle Eriksson,¹³ José A. Flores-Livas,¹² Kevin F. Garrity,¹⁷ Luigi Genovese,^{7,8} Paolo Giannozzi,¹⁸ Matteo Giantomassi,¹⁹ Stefan Goedecker,²⁰ Xavier Gonze,¹⁹ Oscar Grånäs,^{13,21} E. K. U. Gross,¹² Andris Gulans,^{14,15} François Gygi,²² D. R. Hamann,^{23,24} Phil J. Hasnip,²⁵ N. A. W. Holzwarth,²⁶ Diana Iuşan,¹³ Dominik B. Jochym,²⁷ François Jollet,²⁸ Daniel Jones,²⁹ Georg Kresse,³⁰ Klaus Koepernik,^{31,32} Emine Kücükbenli,^{9,11} Yaroslav O. Kvashnin,¹³ Inka L. M. Locht,^{13,33} Sven Lubeck,¹⁴ Martijn Marsman,³⁰ Nicola Marzari,⁹ Ulrike Nitzsche,³¹ Lars Nordström,¹³ Taisuke Ozaki,³⁴ Lorenzo Paulatto,³⁵ Chris J. Pickard,³⁶ Ward Poelmans.^{1,37} Matt I. J. Probert,²⁵ Keith Refson,^{38,39} Manuel Richter,^{31,32} Gian-Marco Rignanese,¹⁹ Santanu Saha,²⁰ Matthias Scheffler,^{15,40} Martin Schlipf,²² Karlheinz Schwarz,⁵ Sangeeta Sharma,¹² Francesca Tavazza,¹⁷ Patrik Thunström,⁴¹ Alexandre Tkatchenko,^{15,42} Marc Torrent,²⁸ David Vanderbilt,²³ Michiel J. van Setten,¹⁹ Veronique Van Speybroeck,¹ John M. Wills,⁴³ Jonathan R. Yates,²⁹ Guo-Xu Zhang,⁴⁴ Stefaan Cottenier^{1,45}*

15 codes
69 researchers
71 elemental bulks
GGA-PBE
Scalar relativistic

PBE lattice constant of Si

Δ-gauge A way of comparing accuracy of codes

Volume (Å³ /atom)

Evaluation of GGA-PBE By Δ -gauge

In comparison of GGA-PBE with Expts. of 58 elements, the mean Δ -gauge is 23.5meV/atom.

н																	He
Li	Be	$\Delta(exp) = 23.5 \text{ meV/atom}$											F	Ne			
0.4													17.6				17.1
Na	Mg						Al	Si	Р	5	cl	Ar					
0.2	1.5						3.9	13.7	19.0	44.0	46.1	38.6					
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
1.4	3.0	1.7	3.0	13.1	1.6	47.7	10.6	3.3	6.2	13.5	7.6		28.2	17.1	11.1	22.3	54.6
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
1.3	2.4	0.7	8.2	14.8	26.5		30.4	44.6	49.1	39.3	34.0	23.6	40.7	25.1	9.9	68.1	59.8
Cs	Ba	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
4.0	2.5		2.8	16.8	35.6	29.9	65.2	50.7	54.9	64.0		42.4	32.9	32.0			

Comparison of codes by Δ -gauge

	AE							/	٩W	P/				۶P	ISF	U				P	CF			ONCV	
	Elk	exciting	FHI-aims/tier2	FLEUR	FPLO/T+F+s	RSPt	WIEN2k/acc	GBRV12/ABINIT	GPAW09/ABINIT	GPAW09/GPAW	JTH02/ABINIT	PSlib100/QE	VASPGW2015/VASP	GBRV14/CASTEP	GBRV14/QE	OTFG9/CASTEP	SSSP/QE	Vdb2/DACAPO	FHI98pp/ABINIT	HGH/ABINIT	HGH-NLCC/BigDFT	MBK2013/OpenMX	ONCVPSP (PD0.1) /ABINIT	ONCVPSP (SG15) 1/QE	ONCVPSP (SG15) 2/CASTEP
average < Δ >	0.6	0.5	0.5	0.6	0.9	0.8	0.5	0.9	1.4	1.6	0.6	0.9	0.6	1.1	1.1	0.7	0.5	6.3	13.3	2.2	1.1	2.0	0.7	1.4	1.4
Elk		0.3	0.3	0.6	1.0	0.9	0.3	0.9	1.3	1.5	0.6	0.9	0.4	1.1	1.0	0.4	0.4	6.3	13.5	2.2	11	2.1	0.7	1.4	1.4
exciting	0.3		0.1	0.5	0.9	0.8	0.2	0.8	1.3	15	0.6	0.8	0.4	1.1	1.0	0.5	0.3	6.3	13.4	2.2	Ľ	2.1	0.7	1.3	1.4
FHI-aims/tier2	0.3	0.1		0.5	0.9	0.8	0.2	0.8	1.3	1.5	0.6	0.8	0.4	1.0	0.9	0.5	0.3	6.3	13.4	2.2	11	2.1	0.7	1.3	1.4
	0.6	0.5	0.5		0.8	0.6	0.4	0.9	1.3	1.5	0.6	0.8	0.6	1.0	1.0	0.7	0.5	6.3	13.2	2.0	1.0	1.9	0.6	1.3	1.3
FPLO/T+F+s	1.0	0.9	0.9	0.8		0.9	0.9	1.3	1.7	1.8	0.9	1.3	1.0	1.4	1.4	1.0	0.9	6.4	13.0	2.3	1.2	1.8	1.0	1.6	1.6
RSPt	0.9	0.8	0.8	0.6	0.9		0.8	1.1	1.5	1.7	0.7	1.1	0.8	1.3	1.3	1.0	0.8	6.5	13.2	2.2	Ľ	1.8	0.8	1.5	1.5
WIEN2k/acc	0.3	0.2	0.2	0.4	0.9	0.8		0.8	1.3	1.5	0.5	0.8	0.3	1.0	1.0	0.5	0.3	6.2	13.4	2.1	1.0	2.0	0.6	1.3	1.4

The mean Δ -gauge of OpenMX is 2.0meV/atom.

Summary

- OpenMX is a program package, supporting DFT within LDA, GGA, and plus U, under GNU-GPL.
- The basic strategy to realize large-scale calculations relies on the use of pseudopotentials (PPs) and localized pseudoatomic orbital (PAO) basis functions.
- The careful evaluation of the total energy and optimization of PPs and PAOs guarantee accurate and fast DFT calculations in a balanced way.
- > The Δ -gauge might become a standard measure to check accuracy of newly developed codes and functionals.