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Challenges in computational materials science

1. To understand physical and chemical properties 

of molecules and solids by solving the Dirac 

equation as accurate as much possible. 

2. To design novel materials having desired 

properties from atomistic level theoretically, 

before actual experiments. 

3. To propose possible ways of synthesis for the 

designed materials theoretically. 



Schrödinger equation and wave functions

kinectic         external          e-e

Conditions that wave functions must satisfy

(1) indistinctiveness

(2) anticommutation (Pauli’s exclusion principle)

(3) orthonormalization

A expression that satisfies above conditions:



Classification of electronic structure methods

Wave function theory

Density functional theory

Quantum Monte Carlo method

Many body Green’s function method

e.g., configuration interaction (CI) method

Computational 

complexity Features

O(eN)

O(N3)

O(N3～)

O(N3～)

High accurary

High cost

Medium accuracy

Low cost

High accuray

High cost

Easy to parallel

Medium accuray

Excited states



A form of many electron wave funtion 

satisfying indistinctiveness and anti-

commutation.

HF energy
One-electron integral

Coulomb integral

Exchange integral

The variation of Ψ leads to HF equation:

Slater determinantal funtion

Hartree-Fock (HF) method



Results by the HF method

HF            Experiment

bond(O-H)

(Å) 0.940    0.958

Angle(H-O-H)  

(Deg.)) 106.1              104.5 

ν1 (cm-1) 4070              3657

ν2 (cm-1) 1826              1595

e.g., H2O



Correlation energy

Ecorr = Eexact - EHF

H2O

e.g.

Eexact = -76.0105 a.u. 

Ecorr =   -0.1971 a.u.

The correlation energy is about 0.3 % of 

the total energy.



By noting one particle wave functions are expressed by a product of 

spatial one particle and spin functions, we obtain the following 

formula:

If ηl ≠ ηl’ → K = 0       

Exchange interaction arises between orbitals with a same spin 

funcion.      → K<0 in general → Hund’s 1st rule

Exchange integral

If ηl = ηl’ → K ≠ 0       

* *

1 2 1 ' 1 2 ' 2( ) ( ) ( ) ( )l l l lK d d          

* * * *

1 2 1 ' 1 2 ' 2

1 2

1
( ) ( ) ( ) ( )

| |
l l l ld d    

 r r r r r r
r r



Two-body distribution function in HF method (1)

A two-body distribution function is defined by

In case of parallel spin

In case of antiparallel spin

In the HF method, electrons with the 

different spin are fully independent.where

Exchange 

hole density

Spin density



Two-body distribution function in HF method (2)

Exchange hole density

Pauli’s exclusion principle

Sum rule

Exchange hole density for Jellium model

In case of non-spin polarization, 
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L
L

L

V=L3

Suppose that electrons uniformly occupy 

in a rectangular unit cell with a lattice 

constant under periodic boundary 

condition, and that the positive 

compensation charges also spread over the 

unit cell so that the total system can be 

neutral.

One-particle wave function

The second quantized Hamiltonian of the jellium model

Jellium model



Jellium model in high density limit

Scaled Hamiltonian with mean distance rs of electrons
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rs → 0 corresponds to the high density limit, and the second 

term becomes a small perturbation. Thus, the first term gives 

the zeroth order energy, while the second term gives the first 

order correction in the perturbation theory. 
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The evaluation of E0 and E1 is cumbersome, but possible 

analytically, and as the result we obtain the following formulae: 

These results are very important, because they suggest 

that the total energy seems to be expressed by electron 

density, leading to a birth of a density functional theory. 

Energies in the jellimum model
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Local density approximation (LDA)

Σ

ε(ρ(r1)) ρ(r1) ΔV

An energy of the system is approximated by employing a local 

energy density which is a function of the local density ρ. 

ε(ρ(r2)) ρ(r2) ΔV

ε(ρ(r3)) ρ(r3) ΔV

・
・
・

ε(ρ(ri)) ρ(ri) ΔV

= ∫ ε(ρ(r)) ρ(r) dr

i



Local density approximation (LDA) to the kinetic energy. No exchange-correlation

The kinetic energy density t(ρ) is that of non-interacting electrons in the jellium model.

Thomas-Fermi model:  The simplest density functional

The second quantized Hamiltonian of the jellium model

2
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The first order perturbation energy in the jellium model is used as the exchange 

energy density εx(ρ).

Thomas-Fermi-Dirac model
LDA to the kinetic and exchange, but no correlation

The second quantized Hamiltonian of the jellium model

2



Electron density of Ar

by W.Yang, 1986

1s 2s,2p

3s,3p

1. No shell structure of atoms

2. No binding of atoms

3. Negative ion is unstable

The failures may be attributed to the 

large error in the kinetic energy 

functional.

The kinetic energy (a.u.) of Ar(a.u.)

HFa 526.82

TFb 489.95

KS-LDA    525.95

a: Cemency-Roetti (1974)

b: Mrphy-Yang (1980) 

Failures of Thomas-Fermi-Dirac model



The first theorem

The energy of non-degenerate ground state 

can be expressed by a functional of 

electron density.

The second theorem

The ground state energy can be obtained by minimizing 

the functional with respect to electron density.

W.Kohn (1923-)

Hohenberg-Kohn’s theorem

FHK[ρ]

Hohenberg and Kohn, PR 136, B864.



Suppose that different vs give the same ρ.

Adding above two equations leads to

A discrepancy occurs. Thus, for a given v, ρ is uniquely determined.

It was assumed the v-representability that a corresponding v exists for a given ρ.

Later the proof was modified under the N-representability condition by Levy (1979).

The proof of the first theorem by HK



According to the first theorem and the variational principle,

Thus, 

By the proof of the HK’s theorem, the TF and 

TFD models have been regarded as approximate 

theories for the rigorous DFT. 

The proof of the second theorem by HK



v- and N-representability (1)

The proof for the first HK theorem shows 

v → ρ ・・・ (A)

but never show v ← ρ     ・・・ (B)

If the condition (B) is satisfied for a given ρ, it is mentioned that the density 

ρ is v-representable. In the HK theorem we assumed the v-representability 

implicitly.  

On the other hand, if the following condition (C) is satisfied for a given ρ, it 

is mentioned that the density ρ is N-representable.

Ψ ← ρ     ・・・ (C)

v ⇔ Ψ ⇔ ρ

v ⇔ Ψ ⇔ ρ

v-representability

N-representability

? v- N-

v ⇔ Ψ ⇔ ρ

General case

? ?

General

Domain of ρ



v- and N-representability (2)

Condition of v-representability

For general cases, the condition is unknown.

Condition of N-representability

Positivity Charge conservation Continuity

The condition of N-representability is physically reasonable, and 

easy to hold. Thus, it would be better to formulate DFT under the 

N-representability, which was actually done by Levy in 1979.

Gilbert, PRB 12, 2111 (1975).



Theorem by Levy

Levy, PNAS 76, 6062 (1979)

Theorem I: The ground state energy EGS is the lower bound of E[ρ].

Theorem II: The ground state energy EGS is represented by the ground state 

one-electron density ρGS.



Proof of the theorem by Levy
Let us consider a constraint minimization of E.

The first line is just a conventional variational 
problem with respect to ψ.

In the second line, two step minimization is 
introduced.

(1) Choose N-representable ρ
(2) Minimize E with respect  to ψ giving ρ
(3) Repeat steps (1), (2) 

The third line is a transformation of the second line.
The fourth line is a transformation of the third line.

The theorem 1 is 
proven by the first = 
the fourth line.

The ground state 
density ρGS is N-
representative, 
implying that it is 
included in the 
domain. Thus, the 
fourth line proves 
the theorem 2. 



The wave functions of non-interacting electrons are evaluated by an one-particle KS eq. under an 

effective potential. Then, the electron density of non-interacting electrons becomes equal to that 

of the true wave funtions.

The kinetic energy of non-

interacting electrons

KS effective potential

Comparison of the kinetic energy of Ar HFa 526.82

TFb 489.95

KS-LDA    525.95
a: Cemency-Roetti (1974)

b: Mrphy-Yang (1980) 

Kohn-Sham equation (1)

in a.u.

Since the kinetic energy functional in the TFD model is a crude model, the majority 

part of the kinetic energy is evaluated by that of a non-interacting system.

0
E






By expressing the kinetic energy as

To satisfy δE=0 for arbitrary δρ, the following relation should be satisfied:

This is nothing but the definition of the KS effective potential. Thus, ρ calculated by the 

KS eq. satisfies δE/δρ=0, which might be the density of the ground state. 

0
E


Proof of

KS eq. is derived by assuming δE/δφ=0. 

However, how about δE/δρ=0?

and considering variation of each term, we have the following eq.



Eigenvalue of KS eq. 

The physical meaning of eigenvalues ε is non-trivial, 

since ε were introduced as Lagrange’s multipliers. 

Mathematically, the eigenvalue εi is the partial derivative of 

the total energy w. r. t. ni.

Janak’s theorem



Derivation of Janak’s theorem

By noting that the charge density is determined by {nk} and {ψk},

it is found that the variation of total energy is given by 

The first term of the right hand side is zero because of the derivation 

of KS equation, thus we have



Comparison between experiment and theory
STS (scanning tunneling spectroscopy) for SWCNT

Semiconducting SWCNT Metallic SWCNTs 

Avramov et al., CPL 370, 597 (2003).

One can see the crude approximation works well expect 

for the band gap of SWCNTs.



d-band width: Theory vs. Expt.
Angle resolved photoemission for transition metals

Eastman et al., 

PRL 44, 95 

(1980)

Though LDA 

calculations qualitatively 

reproduce the d-band 

width of 3d-transition 

metals, however, the 

calculations overestimate 

the values about 1eV.



Approximation to Exc

In the KS method, once we know Exc[ρ], the ground state of 

the system can be obtained. However, as this quantity contains 

all the details of electron correlation, a universal functional 

has been still under development. In most of practical DFT 

calculations, 

LDA (Local Density Approximation)

or

GGA (Generalized Gradient Approximation)

is employed. In LDA, Exc[ρ] is given by 

εxc is an exchange-correlation energy density of jellium 

model with the electron density ρ.



In Jellium model

The exact analytic formula of εc(ρ) is unknown.

It is numerically evalulated by QMC, and it is fitted to analytical functions.

QMC D. M. Ceperley and B. J. Alder, Phys. Rev. Lett., 45, 566 (1980)

Analytical formula by fitting S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980)

Correlation energy in Jellium model



In spite of the crude approximation by 

LDA, the results look good.

Accuracy of KS-LDA

Geometry of molecules and bulks

Cohesive energy

Dipole moment

Excitation energy

vdW energy

Error of 1-5 % 

Error of 0.1-0.5 eV

Error of 10 %

Underestimation of 50%

Not in tolerable range



General consideration to LDA (1)

LDA is based on the assumption that each part of the system can be locally 

regarded as a homogeneous electron gas with the local electron density ρ(r). 

This condition is mathematically expressed as  

with the local Fermi wave vector.

The left hand side of Eq. (A) is the change in the electron density over the 

Fermi wave length, which should be much smaller than the electron 

density itself for the validity of LDA. 

It is known that Eq. (A) is not satisfied in real systems. Nevertheless, it is 

also known from many examples that LDA works much better than 

expected. Why?

・・・ (A)



General consideration to LDA (2) 

There are mainly two reasons why LDA works much better than expected.

In most cases, we only need the difference in total 

energy between different situations. For example, the 

energy difference between the structures A and B. Then 

the common error of LDA cancels out. This is a nice 

aspect of variational principle.

1. ΔSCF

Important

A B

1. Sum rule in the xc hole density

As the total energy is an integrated quantity over the 

space, only the spherical average of xc hole density 

affects to the total energy. The sum rule of the xc hole is 

an important factor.

LDA 

error



An important consequence is that only the spherical average of 

exchange-correlation hole can attribute to the xc energy.

Exchange-correlation hole

Exchange energy
The Coulomb interaction between and electron and exchange hole 

whose integral gives –1.

Correlation energy
The Coulomb interaction between and electron and correlation 

hole whose integral give zero.



O. Gunnarson et al., PRB 20, 3136 (1979)

Exchange hole Its spherical average

Exchange hole of Ne and its spherical average



1. The band gap of solid is underestimated about 50%.

2. vdW interaction is not described properly.

3. The lattice constant is underestimated by a few %.

4. Poor description of 3d transition metals: strucutre and magnetism

5. The activation barrier of chemical reaction is largely 

underestimated. 

6. Orbital polarization of transition metal oxides 

is not described.   

Deficiencies of LDA



GGA by Perdew, Burke, and Ernzerhof (PBE)
PRL 77, 3865 (1996).

They developed a GGA functional which satisfies several conditions such as (1) 

the sum rule for exchange and correlation holes, (2) the asymptotic forms at s → 0.

It can be written as

< 0

For the most of real materials, rs ranges 

from 2 to 6. Then, Fxc increases with s, 

i.e., Exc more negative with the 

increasing s.

For most physical rs, GGA favors density 

inhomogeneity more than LDA does.



LDA vs GGA: ρ of Ne 

(GGA-LDA)×100

At two shell structures, GGA favors more localized states.

GGA favors density inhomogeneity→ localized states are favored.



LDA vs GGA: Atomic calculations by GGA-PBE

Exchange energy (-Ex, in Ha) Correlation energy (-Ex, in Ha) 

The significant improvement for Ex and Ec was 

made by GGA.

The tables were taken from R.M. Martin, “Electronic Structure”.



FM-bccNM-fcc

NM-hcp FM-bcc

NM-hcp
NM-hcp

LDA vs. GGA: Cohesive properties of Iron

Exp.

GGA reproduces the experimental ground state (FM-bcc), 

while LDA predicts the NM-hcp state as the ground state.

Asada and Terakura, PRB 46, 13599 (1992).



Comparison between LDA and GGA:

Structural properties of bulks 

GGA-PBE:  Error in a0: ~ 0.03 Å, in B0: ~ 10 GPa

F. Tran et al., 

PRB 75, 115131 

(2007).



1. Band gap:                      Underestimation of 30 %

2. vdW interaction:           No binding in many cases

3. Strongly correlation:    No orbital polarization of localized 

d- and f-states 

Atomization energy:       0.3 eV (mostly overbinding)

Bond length:                   Overestimation of 1 %

Bulk modulus:                Underestimation of 5 %

Energy barrier:                Underestimation of 30 %  

Mean absolute error 

Successes and failures of GGA

Successes:

1. Accuracy:

2. Accurate description of hydrogen bonding

3. Better description of magnetic ground states (e.g., bcc Fe)

Failures:



1. Hybrid functional

Exact exchange is admixed with GGA, leading to a better 

description for the band gap problem. 

2. Non-local correlation functional

A fully non-local functional based on the Adiabatic 

Connection/Fluctuation Dissipation Theorem (AC/FDT). This well 

reproduces accurate CCSD(T) results for vdW systems.

Beyond GGA

2. Orbital dependent functional (DFT+U method)

Strong correlation in localized orbitals appearing transition 

metal oxides is taken into account by adding a Hubbard term. 



General consideration of eigenvalues 

in the HF method and GGA

Multi-configurational 

Hatree-Fock

Ψ= c1φ1 + c2φ2 + …

Hartree-Fock GGA

Veff consisting of N-1

Veff consisting of N

Veff consisting of N



Band gap by a hybrid functional

Paier et al., JCP  124, 154709 (2006).

Heyd et al., JCP  121, 1187 (2004).

Shishkin et al., PRB 75, 235102 (2007).

Shimazaki et al., JCP 132, 224105 (2005).

The HF method overestimates the 

gap due to lack of screening effect. 

GGA underestimates the gap due to 

self-interaction error. 

The hybrid functional (HSE) can 

well reproduce the experimental band 

gap of insulators and semiconductors 

due to inclusion of a proper screening 

effect, which are well compared to 

results by a many body perturbation 

theory, GW method. 



vdW interaction

A fully non-local functional developed by Langreth et al., which is based on the 

Adiabatic Connection/Fluctuation Dissipation Theorem (AC/FDT), well reproduces 

accurate CCSD(T) results.

Dion et al., PRL 92, 246401 (2004).

Lee et al., PRB 82, 081101(R) (2010).
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General consideration of Self-interaction 

and orbital polarization

Consider degenerate states are partially filled e.g., d-

orbitals in oxides. 

In case that three degenerate 

states are occupied by two

electrons, the occupation of 2/3 

for each state is energetically 

favored if there is spurious self-

interaction.

2/3 2/3 2/3

If there is no spurious interaction, 

a naïve consideration implies that 

the left case leads to interaction 

of  8/3(=3*2/3*4/3), while in 

right case the interaction of 

2(=2*1*1). 

１ １



Orbital polarization of localized d-electrons:

Importance of orbital dependent functional

Co2+: d7

t2g

eg

The functional is discontinuous at occupation 

numbers of integer, which should be hold in an exact 

functional.

LDA

CoO bulk

LDA+U

CoO bulk

Han et al., PRB 73, 045110 (2006).



Summary

• Classification of first-principles methods

• Hartree-Fock methods

• Jellium model

• Local density appoximation

• Thomas-Fermi-Dirac model

• Density functional theory

• Proof by Levy

• Kohn-Sham equation

• Janak’s theorem

• LDA and GGA

• Beyond GGA

We have discussed the following issues related DFT. 

I think that there is still a plenty of room for development of DFT. 

• Exchange-correlation functionals

• DFT for excited states

• Large-scale DFT methods


