Implementation and Application of Gate Voltage in NEGF Calculations

Mari Ohfuchi1 and Taisuke Ozaki2

1Fujitsu Laboratories Ltd.
2Institute for Solid State Physics, The University of Tokyo
My 2nd Visit to South Korea This Month

Oct. 30 – Nov. 3
7th A3 Symposium on Emerging Materials
Buyeo, 2.5 h

Nov. 24 – 25
2nd OpenMX Developer's Meeting
Daejeon, 3 h
Outline

■ Introduction
 ■ Motivation and Significance for the Implementation of a Gate Function in NEGF Calculations

■ Implementation of a Gate Function
 ■ Symmetric Zigzag Graphene Nanoribbon Spin Filter

■ Application to All Two-Dimensional (2D) Tunneling Field Effect Transistors (TFETs)
 ■ P-doped GeSe/MoS$_2$/VS$_2$ TFETs

■ Summary
Introduction

MPU High-Performance Physical Gate Length

MPU
Micro processor unit

MOS (metal oxide semiconductor) transistor

GL$_{ph}$

Equivalent scaling
High mobility channel materials
High-κ metal gate
Non-classical CMOS
Tunneling, Spin

Dimensional scaling

Physics-Based Simulation, OpenMX

Year of Production

2010 2015 2020 2025 2030
Toward Whole-Device Simulations

- O(N) Parallelization of NEGF calculations
- Implementation of Gate Voltage

Number of Atoms

- 10,000
- 3,000
- 1,000

Years

- 2011
- 2014
- 2016
- 2018

Publications:

Implementation of a Gate Function

Symmetric Zigzag Graphene Nanoribbon Spin Filter\(^1\)

\(^1\)T. Ozaki et al., PRB 81, 075422 (2010).

\(\sigma\): symmetric
\(\pi\): symmetric
\(\pi^*\): antisymmetric

Antiferromagnetic junction

\[V_b = 0 \]

\[V_b > 0 \]

\(E\)

Transmission

\(eV_b\)

\(I\)

\[\text{up} \]

\[\text{down} \]
Model for tests of the implementation

Symmetric Zigzag Graphene Nanoribbon

Ferromagnetic junction

$V_{SG} < 0$

Transmission

Double gate structure
3D Poisson equation

Boundary condition (BC)

\[
\left(\frac{\partial}{\partial x^2} - k_y^2 - k_z^2 \right) \varphi(x, k_y, k_z) = -\frac{4\pi}{\varepsilon_0} \rho(x, k_y, k_z)
\]

Parallelization in bc plane (63x125)

\[
\left(\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} - k_z^2 \right) \varphi(x, y, k_z) = -\frac{4\pi}{\varepsilon_0} \rho(x, y, k_z)
\]

Parallelization in only c line (125)
Modification of only 10 Files

- tran_variables.h
- openmx_common.h
- lapack_prototypes.h
- tran_prototypes.h
- Allocate_Arrays.c
- Free_Arrays.c
- init_alloc_first.c
- truncation.c: Preparation for transforming from AB to C partition
- TRAN_Input_std.c
- TRAN_Poisson.c — TRAN_Poisson_FDG

- FFT for the boundary conditions
- Transformation from AB to C partition
- 2D real space Poisson equation
- Transformation from C to AB partition
- FFT to real space
Hartree Potential (eV)

$V_{SD} = 0 \text{ V, } V_{SG} = 0 \text{ V}$

$V_{SD} = 0.3 \text{ V, } V_{SG} = -10 \text{ V}$
This provides another possible spin filter.
All 2D Material Tunneling FETs

- **Graphene**
 Discovery (2004)

- **hBN**
 B C N

- **Transition metal dichalcogenide (TMDC)**

- **Phosphorene**

- **Group-IV monochalcogenide**

Chemical Elements:
- Transition metal dichalcogenide (TMDC): Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
- Group-IV monochalcogenide: P, S, Ge, Sn, Te, S, Se, Te

Graphene, hBN, Phosphorene, and Group-IV monochalcogenide are 2D materials used in tunneling field-effect transistors (FETs).
The lattices of these materials are matched with a relatively small unit cell.

The subthreshold swing (SS) in conventional FETs is limited to 60 mV/dec.
Computational Details

- DFT code: OpenMX
- Exchange-correlation potential: GGA-PBE with van der Waals correction
- Norm-conserving pseudopotential: Troullier-Martins
- Pseudo atomic orbitals (PAOs)
 - Geometry optimization:
 - Ge7.0-s3p3d3f2, Se7.0-s3p3d2f1, P7.0-s3p3d2f1, Mo7.0-s3p2d2f1, S7.0-s3p3d2f1, V6.0-s3p3d2
 - Transport: s2p2d1
- Temperature: $T = 300 \text{ K}$
Atomic Structure

Channel

Source

Drain

V_2S_2

MoS_2

$GeSe$

L_{Ch}

Number of atoms

1.9 nm 244

2.6 nm 280

Interlayer distance: 0.323 nm

Contact length: 0.6 nm
Partial density of states (PDOS) of Mo atom in the center of the channel ($L_{Ch}=1.9$ nm)

$V_{SD} = 0.1$ V

V_{SG}
- 0 V
- 10 V
- 20 V
- 30 V
- 50 V

Energy (eV)

PDOS (a.u.)
The subthreshold swing (SS) would be further improved by using a high-κ material as a gate dielectric that is a vacuum in the present model.
Computational Cost

Computer: Fujitsu PRIMERGY CX400

Information Technology Center, Nagoya University
568 nodes
28 cores (128 GB)/node

<table>
<thead>
<tr>
<th>L_{Ch} (nm)</th>
<th>Number of atoms</th>
<th>Number of mpi</th>
<th>Number of threads</th>
<th>Time (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td>244</td>
<td>105</td>
<td>7</td>
<td>1.5</td>
</tr>
<tr>
<td>2.6</td>
<td>280</td>
<td>105</td>
<td>7</td>
<td>2.7</td>
</tr>
</tbody>
</table>

We need further parallelization of Poisson equation calculation.
Summary

- We implemented a gate function in OpenMX (DFT-based NEGF code), by applying open boundary conditions to the 3D Poisson equation.

- We designed GeSe/MoS$_2$/VS$_2$ TFETs and examined the device properties using the developed code.

 - $I_{on}/I_{off} > 10$, SS = 8.5 V/dec @ $L_{Ch} = 1.9$ nm

 - $I_{on}/I_{off} > 10^3$, SS = 3.6 V/dec @ $L_{Ch} = 2.6$ nm

- This could be a powerful tool for exploring novel nanoelectronic and spintronic devices.
shaping tomorrow with you