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Overview of the lectures

We discuss electronic structures and cohesive 
mechanism of materials in isolated phases and 
condensed phases, and extend our discussion to 
understand optical, dielectric, magnetic, and 
transport properties. 

Density functional theories and linear response 
theories giving a framework for a comprehensive 
understanding of the issues we cover will be 
introduced in a concise way. 

We also cover how the theories and simulations can 
be compared to various experimental data together 
with introduction of experimental techniques and its 
applications.



 Structures and cohesive mechanism
 Density functional theories
 Linear response theories
 Optical and dielectric properties of materials
 Magnetic order and magnetic properties of solids
 Transport phenomena in materials
 Relativistic effects in materials

Topics we will discuss



 In most of classes, exercise problems 
will be given to promote your 
understanding. 

 The evaluation will be made based on the 
reports for the exercise problems you 
will submit. 

 In the beginning of the next class, you 
are requested to submit your report that 
I gave you in the last class. 

Evaluation



Lecture style

If you have a question, please post your 
question to “chat” on Zoon. We will have a 
time for discussion occasionally. 

I may ask you some question during lecture 
randomly. 

If you have a further question, please post 
your question to slack. 

https://app.slack.com/client/T01B4G2L1RD/C01BKEKJHNX



References #1

Electronic Structure: Basic Theory and Practical Methods, 
Richard M. Martin, Cambridge University Press. 日本語訳あり

固体 - 構造と物性、金森順次郎、米沢富美子、川村清、寺倉清之、
岩波書店.

多体問題特論 - 第一原理からの多電子問題、高田康民、朝倉書店. 

量子化学入門 (上・下)、米澤貞次郎等、化学同人.

遷移金属のバンド理論、小口多美夫、内田老鶴圃.

Density-Functional Theory of Atoms and Molecules, Robert G. 
Parr, Weitao Yang, Oxford University Press USA. 日本語訳あり

Bonding and Structure of Molecules and Solids, David G. 
Pettifor, Oxford University Press. 日本語訳あり



Quantum Theory of Many-Particle Systems, Alexander L. 
Fetter, John Dirk Walecka, Dover Publications. 日本語訳あり

Solid State Physics, Giuseppe Grosso, Giuseppe Pastori 
Parravicini, Academic Press. 日本語訳あり

Band Theory and Electronic Properties of Solids, John 
Singleton, Oxford Master Series in Physics. 日本語訳あり

Magnetism in Condensed Matter, Stephen Blundell, Oxford 
Master Series in Physics. 

Optical Properties of Solids, Mark Fox, Oxford Master 
Series in Physic.  

References #2



https://t-ozaki.issp.u-tokyo.ac.jp/lecture.html

Related information

https://app.slack.com/client/T01B4G2L1RD/C01BKEKJHNX

WEB

Slack

t-ozaki@issp.u-tokyo.ac.jp

Email



Lecture 1

 Experiments and theories
 Density functional theory
 Virial theorem
 Bonding in a H2 molecule
 Electronic structures of simple molecules



a.u. Expression SI unit

Mass of electron 1 m 9.109384×10-31 kg

Elementary charge 1 e 1.602177×10-19 C

Reduced Plank’s    
constant

1 1.054572×10-34 J・s

Length 1 5.291772×10-11 m

Energy 1 4.359745×10-18 J

Magnetic flux
density

1 2.350518×105 T

Velocity 1 2.187691×106 m・s-1

Coulomb force 
constant

1
8.987552×109 kg・m3・s-2・
C-2

Magnetic dipole      
moment

1 18.5480202×10-24 J T-1
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Cooperative collaboration between experiments and theories

 Size of ellipse 
reflects activities 
of current status.

 In the near future, 
the exploration of 
new materials are 
expected.

Analysis of 
Materials

Vibration, UV, IR, NMR
Geometry, Stability

Proposal of novel 
functionalities

Engineering of band structures
Spin current, topological insulators

Exploration of 
new materials

Prediction of new crystals, 
reverse engineering from 
functions to structures



Targets in Condensed Matter Physics

1. To understand chemical and physical 
properties of molecules and solids by 
solving Schrödinger/Dirac eqs. as 
accurate as possible.  

2. To design materials which may have 
desired properties before actual 
experiments. 

3. To propose a way of synthesis for 
designed materials from a theoretical 
point of views. 



Governing equation for physics of solids

Schrödinger equation
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(1) Indistinctiveness of electrons
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Conditions that wave functions must satisfy



Density functional theory

Quantum Monte Carlo method

Many body Green’s function method

e.g., configuration interaction (CI) method

Features
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Density functional theory

 By taking account of quantum many body interaction into 
the exchange-correlation energy, one can formulate an 
one-body problem as the Kohn-Sham equation. 

 The total energy can be expressed by a functional of ρ.
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Cores: 2,414,592+NVIDIA Tesla V100 GPUs
Rmax:  148,600 (TFLOP/sec.)
Pmax:  200,795 (TFLOPS/sec.)  

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA 
Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM 
DOE/SC/Oak Ridge National Laboratory, United States

Summit in ORNL:  200 Peta flops machine



Top 500

http://www.top500.org/

2040

10 Zeta Flops

(Zeta = 1021)

(Peta = 1015)

According to Moore’s law …



Bonding in H2 molecule

H2 is the simplest molecule which has two 
nuclei and two electrons. 

The bonding mechanism is understood by the 
virial theorem. 

 Derivation of virial theorem
 DFT calc. of H2



Virial theorem #1

Per-Olov Loewdin, J. Mol. Spect. 3, 46 (1959).
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We consider a system consisting of N-electrons and M-nuclei defined by 

We introduce scaled variables and a scaled wave function of the 
ground state: 

The ground state energy of E can be written by a s-dependent form as:
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Noting that the atomic force is given by 

and inserting the expression of forces to Eq. (A), we have the virial 
theorem.

・・・ (A)

Virial theorem #2
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In a large bulk, the atomic forces are non-zero 
around surface.

Using the Gauss theorem, one can rewrite as 

Thus, the virial theorem is now given by 

Virial theorem #3
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Analysis of cohesive energy by the virial theorem

At the equilibrium and the well 
separated atomic state, forces acting 
on atoms become zero. Thus, from the 
virial theorem we have 

The total energy is given by 

The cohesive energy is 
given by 

should be positive. Thus, we have an important general consequence: 



A simple example: H2 molecule

Virial theorem
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the cohesive energy Deq is 
given by 

The kinetic 
energy must 
increase by the 
bond formation. 

H2 is the simplest molecule which has two nuclei and two electrons. 
According to the virial theorem, the bonding energy can be 
understood by the mechanism (a). 

How can we confirm this by DFT ?

Kinetic energy  Potential energy
(a) destabilization stabilization
(b) stabilization destabilization
(c) stabilization    stabilization



Energy curve of H2

 The lowest at 0.750Å

 Ferromagnetic state is 
stable at a large 
separation. 



Binding energy of H2 #1

Total energy 
(Hartree)

H2 -1.16581
H (non-spin polarization) -0.45781
H (spin polarization)      -0.49914
Spin polarization energy          0.04133

Binding energy = 2 H – H2 
= 2×(-0.49914) – (-1.16581)
= 0.1675 (Hartree)
= 4.56 (eV)

Expt. 4.75 (eV)

State

The calculated value is underestimated by 0.19 eV. 



ΔEkin = 1.11582-0.98309     = 0.13273 (Hartree) =   3.612 (eV)

ΔEpot =-2.28163-(-1.98139) =-0.30024 (Hartree) = -8.170 (eV)

ΔEtot =                                                                       -4.56 (eV)

Binding energy of H2 #2

Kinetic energy Potential energy 

In fact, one can see that the energy gain follows the virial theorem. 

Strictly speaking, the discussion should be corrected in GGA, since the correlation energy includes a part 
of the kinetic energy. But the effect is not so large. 



Shrinking of Kohn-Sham orbital in H2

The KS orbital shrinks, 
and localized around 
the bond center, 
resulting in the 
increase of kinetic 
energy. 

The superposition of 
nucleus potentials at 
the bond center 
provides a deeper 
potential, resulting 
in the lowering of 
potential energy. 

⇒ The energy gain is 
obtained. 



Difference electron density

Red:  increase
Blue: decrease

The increase of 
electron density can 
be seen between 
nuclei.

The electrons obtain 
energy gain due to 
localization at the 
place of the deeper 
potential.

Difference electron density = (electron density of H2) – (superposition of two H electron density)



Why the FM state is stable when separated ?

A ferromagnetic 
state becomes stable 
at a large 
separation.  

Let’s consider why 
this happens.



Eigenenergies of HOMO and LUMO

Eigenvalues
ε0
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The HOMO-LUMO gap is 
getting smaller as 
increasing the bond 
distance.

At 5Å, it becomes 
almost zero.

According to a simple tight-binding model, 



Density of states of H2 at 3Å separation

In the non-magnetic 
state the up- and 
down states are 
degenerate. 

In the magnetic 
state, we have a 
large exchange 
splitting between up 
and down spin state. 
Two electrons 
populate only in the 
up spin states.

Note: the chemical 
potential is set to 
zero.

Red:  NM

Blue: FM



Competition between two energies

NM             FM
Ekin 0.8231    0.9634
Epot -1.7306    -1.9148
Etot -0.9076    -0.9514

in Hartree

For H2 at 3Å separation, the energy contributions of 
the NM and FM states are given by 

In the FM state, the increase of the kinetic energy is overly  
compensated by the decrease of the potential energy which is 
the sum of the Coulomb and exchange-correlation energies.

Why does this happen ?



Molecular orbitals of HOMO and LUMO states

HOMO LUMO

LUMO has a node. Thus, the kinetic energy increase if an 
electron populates in LUMO.

At the equilibrium bond length, isosurfaces of the HOMO and 
LUMO states are shown below:



Reason why the FM state is favored when separated

NM         FM
Ekin 0.8231 0.9634
Epot -1.7306    -1.9148
Etot -0.9076 -0.9514

When an electron is promoted from the HOMO to 
LUMO states, the kinetic energy increases, 
since the LUMO state has the nodal structure 
in the molecular orbital unlike the HOMO 
state. 

On the other hand, the promoted electron can 
be resident in the different orbital. 

This leads to the decrease of the potential 
energy (Coulomb+exchange-correlation
energies). 

Since the total energy is the sum of two 
energies, the energetics is determined by the 
competition between them. Around 2.0Å, there 
is the phase boundary. 

A similar mechanism will be found in many 
materials such as the Stoner condition.



Electronic structures of simple molecules

To get familiar with analysis of electronic 
structure, we analyze simple molecules.

 Methane
 Benzene
 H2O



Hybridized orbitals and molecular structures

Methane

Benzene

Acetylene

sp3 hybridized orbitals

sp2 hybridized orbitals

sp hybridized orbitals
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Simple picture of hybridization 

4 H

Formation of bonding
Eprom(>0)

Ebond(<0)

Eprom+Ebond < 0Condition

1

1 3

2 2 xs p   

2

1 1 2

2 32 3 x ys p p     
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2 2 3 6 2x y zs p p p       

4

1 1 1 1

2 2 3 6 2x y zs p p p       

Promotion of a 2s electron sp3 hybridized orbitals

Bonding states

Anti-bonding states

Atomic ground 
state of C



Density of states of CH4

DOS suggests sp3 hybrid 
orbitals may not be formed. 

Instead, it is natural to 
consider that s, px, py, pz
orbitals form the bonding 
states with s-orbitals of H 
atoms.

A picture by DFT



DOS of a benzene molecule



DOS of a benzene molecule



6 H
×6

pz

σ-bonding consists of s+px+py
orbitals. HOMO and LUMO are doubly 
degenerate π-states, and HOMO-1 are 
doubly degenerate σ orbitals.

Bonding in a benzene molecule

Carbon×6

Promotion of a 2s electron

sp2 hybridized 
orbitals

bonding σ states

bonding 
σ states

bonding π 
states

anti-bonding π 
states

anti-bonding σ 
states



DOS and molecular orbitals of H2O

HOMO
LUMO

The LUMO 
delocalizes 
significantly. 

Isovalue=0.05



Summary

Understanding the cohesive mechanism is a 
starting point for materials science. The virial 
theorem provides us a firm basis in understanding 
the cohesion. Through the analysis of H2 molecule, 
we saw how the bonding is formed. 

 Experiments and theories
 Density functional theory
 Virial theorem
 Bonding in a H2 molecule
 Electronic structures of 

simple molecules



Question time
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