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Overview of the lectures

We discuss electronic structures and cohesive

mechanism of materials in isolated phases and

condensed phases, and extend our discussion to
understand optical, dielectric, magnetic, and

transport properties.

Density functional theories and linear response
theories giving a framework for a comprehensive
understanding of the issues we cover will be
introduced in a concise way.

We also cover how the theories and simulations can
be compared to various experimental data together
with introduction of experimental techniques and its
applications.



Topics we will discuss

® Structures and cohesive mechanism

® Density functional theories

® Linear response theories

® Optical and dielectric properties of materials
® Magnetic order and magnetic properties of solids
® Transport phenomena in materials

® Relativistic effects in materials



Evaluation

® In most of classes, exercise problems
will be given to promote your
understanding.

® The evaluation will be made based on the
reports for the exercise problems you
will submit.

® In the beginning of the next class, you
are requested to submit your report that
I gave you in the last class.



Lecture style

If you have a question, please post your
question to “chat” on Zoon. We will have a
time for discussion occasionally.

I may ask you some question during lecture
randomly.

If you have a further question, please post
your question to slack.

https://app.slack.com/client/TOIB4G2LIRD/COIBKEKJHNX



References #I

Electronic Structure: Basic Theory and Practical Methods,
Richard M. Martin, Cambridge University Press. BAZERH Y

Bk - WBis ik, EHIRREE, KREXRF. NIHFE. FEFZ.
BIRES.

ZkBEERR - F—REH,SHZETFHA. SHER, #AESE.
EFLFEAF (L - TF). KEARBPF, {LFRA.
BBEEN/NY FER, MOZRXR, ABREGE.

Density-Functional Theory of Atoms and Molecules, Robert G.
Parr, Weitao Yang, Oxford University Press USA. BA:E:RH Y

Bonding and Structure of Molecules and Solids, David G.
Pettifor, Oxford University Press. BA&zERH Y



References 12

Quantum Theory of Many-Particle Systems, Alexander L.
Fetter, John Dirk Walecka, Dover Publications. BA&:E:RH Y

Solid State Physics, Giuseppe Grosso, Giuseppe Pastori
Parravicini, Academic Press. BA:E:RH Y

Band Theory and Electronic Properties of Solids, John
Singleton, Oxford Master Series in Physics. BA&zEE:RH Y

Magnetism in Condensed Matter, Stephen Blundell, Oxford
Master Series in Physics.

Optical Properties of Solids, Mark Fox, Oxford Master
Series in Physic.



Related information

WEB

https://t-ozaki. issp.u-tokyo. ac. jp/lecture. html

Slack

https://app.slack.com/client/TOIB4G2LIRD/COIBKEKJHNX

Emai

t-ozaki@issp.u-tokyo.ac. jp



Lecture |

Experiments and theories

Density functional theory

Virial theorem

Bonding in a H, molecule

Electronic structures of simple molecules



Atomic unit

a.u. EXxpression Sl unit
Mass of electron 1 m 9.109384 X 103 kg
Elementary charge 1 e 1.602177 X100 C
LI LIS 1 h=hl2r 1.054572X10% ] + 5
constant
Length 1 a, = 4ne,h” [ (me?) 5.291772X 10 m
Energy 1 E, =me" / (4ze,h)? 4.359745X 1018 J
ﬂgzgﬂ;c L 1 hl(eal) 2.350518 X 105 T
Velocity 1 ac = (e* / (4zeshc) |c 2.187691X 105 m » s
Coulomb force 1 k, =1/ 4z, 8.987552X10%kg * m3 ¢ 52
constant C?
agnetle cipole 1 |eh/m=2en/(2m)=2u) 185480202X 10?4 ] T




Cooperative collaboration between experiments and theories

> Size of ellipse
reflects activities
of current status.

Analysis of
Materials

Vibration, UV, IR, NMR
Geometry, Stability

> In the near future,
the exploration of
new materials are
expected.

Proposal of novel
functionalities

Exploration of

new materials

Engineering of band structures Prediction of new crystals,
Spin current, topological insulators reverse engineering from

functions to structures



Targets in Condensed Matter Physics

|. To understand chemical and physical
properties of molecules and solids by
solving Schrodinger/Dirac egs. as
accurate as possible.

2. To design materials which may have
desired properties before actual
experiments.

3. To propose a way of synthesis for
designed materials from a theoretical
point of views.



Governing equation for physics of solids

Schrodinger equation
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1 N, @2 @2 82 N, N v (1887-1961)
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Conditions that wave functions must satisfy

(1) Indistinctiveness of electrons
(2) anticommutation (Pauli’ s exclusion principle)
(3) Orthonormalization of wave functions



Classification of electronic structure methods

Computational

Wave function theory complexity Features
e.d., configuration interaction (CI) method
Y = ZC 61 (%) B, (%) P (XN) 0(eN) High accurary
I High cost
r'DenS|Ty functional theory A
N :
c . O(N3 Medium accuracy
el (=21 () () O Cou cost
\. = J
Quantum Monte Carlo method
n 3~ High accuray
E:<LPa H LPa> O(N ) High cost
(¥, |¥,) Easy to parallel

Many body Green’ s function method

3~
G =G, +G,AG, + G,AG,AG, + 0(N~)

Medium accuray
Excited states



Density functional theory

® The total energy can be expressed by a functional of p.

Hohenberg-Kohn theorem

E[p]=[dr*p(rve (N +T [p]+ I [p]+E,[ ]

® By taking account of quantum many body interaction into
the exchange-correlation energy, one can formulate an
one-body problem as the Kohn-Sham equation.
Kohn-Sham Ansatz

I_AIKS¢i :gi¢i I:IKSZ_%V2+Veﬁ

)=
op(r)

Veff (r) — Vext (r) + VHartree (r) +



Summit in ORNL: 200 Peta flops machine

Summit - IBM Power System AC922, IBM POWERG 22C 3.07GHz, NVIDIA Cores: 2,414,592+NVIDIA Tesla VIOO0 GPUs
Volta GVI00, Dual-rail Mellanox EDR Infiniband , IBM Rmax: 148,600 (TFLOP/sec.)
DOE/SC/0ak Ridge National Laboratory, United States Pmax: 200,795 (TFLOPS/sec.)
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According to Moore’ s law --:

10 Zeta Flops

(Zeta = 10%)

10 EFlop/s
1 EFlop/s ~ . o
® Sum A # = 500
100 PFlop/s
10 PFlop/s
1 PFlop/s
100 TFlop/s

otens | Top 500

1 TFlop/s

Q
(&)
IS
@
g
=
o)
a

http://www.top500.0rg/

100 GFlop/s
10 GFlop/s

1 GFlop/s

100 MFlop/s

2000 2005 2010 2015

PAVZLY



Bonding in H, molecule

H, is the simplest molecule which has two
huclei and two electrons.

The bonding mechanism is understood by the
virial theorem.

® Derivation of virial theorem
® DFT calc. of H,



Virial theorem #I

We consider a system consisting of N-electrons and M-nuclei defined by

R R

We introduce scaled variables and a scaled wave function of the
ground state:

rL=s"(sr)=s"(T)
o LPS :SgN/Z\P(Tl,TZ,"',?N)
R,=s"(sR,)=5"(R,)

The ground state energy of E can be written by a s-dependent form as:
E(s)=sT(s)+s U(s)
Per-Olov Loewdin, J. Mol. Spect. 3, 46 (1959).



Virial theorem #2

Since the total energy is minimized at s=I, we have

oE , OT (s) 8U (S) 5
~ =25 T(s)+U(s)+Z[ = 6§np ]Rnp—o .
- (A

np

Noting that the atomic force is given by

9= 4, 0o odU
Fp=—F"F7—=5 —=—+—=
OR,, OR, OR,

and inserting the expression of forces to Eq. (A), we have the virial
theorem.

2T +U =Y R, *F,




Virial theorem #3

In a large bulk, the atomic forces are non-zero
around surface.

YR, F, ~R-(ZF] +(pdS) Ao

1dS} {dS} 0

Using the Gauss theorem, one can rewrite as

YR, F, ~ij-ds pj (VeR)dr® =3pV
{S}

Thus, the virial theorem is now given by

21T +U =3pV




Analysis of cohesive energy by the virial theorem

At the equilibrium and the well
separated atomic state, forces acting
on atoms become zero. Thus, from the
virial theorem we have

2Teq+Ueq :O 2Tat+Uat :O
The total energy is given by

E,, =T, +U, =T, =1/2U,

;?seﬁogsswe energy is E. =T +U_=-T = 1/2U »
1

Ecoh :_(Eeq B Eat):Teq _Tat = E(Uat _Ueq)

q

Ecoh should be positive. Thus, we have an important general consequence:

Teq >, Ueq <U,_




A simple example: H, molecule

H, is the simplest molecule which has two nuclei and two electrons.
According to the virial theorem, the bonding energy can be
understood by the mechanism (a).

How can we confirm this by DFT ?

Kinetic energy Potential energy
(a) destabilization stabilization
(b) stabilization destabilization
(c) stabilization stabilization
Total energy Virial theorem
E(R,)=T(R,)+V(R,) 2T (R,)+V(R,)=0
E(Req>:T(Req)+V(ReQ) ZT(Req)+V(Req):O

From the four eqs. above, D, =—(E(Req)—E(ROO)) The kinetic
the cohesive energy D, is energy must

given by =T (Req)—T (ROO) increase by the

bond formation.
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Non-magnetic state

Ferro-magnetic state

® The lowest at 0.750A
® Ferromagnetic state is

stable at a large
separation.

3 4 5 6 7 8
Bond length (Angstrom)




Binding energy of H, %I

Total ener
State 2/

(Hartree)
H, -1. 16581
H (non-spin polarization) -0. 45781
H (spin polarization) -0.49914
Spin polarization energy 0.04133

Binding energy = 2 H - H,
2X(-0.49914) - (-1.16581)
0.1675 (Hartree)

4.56 (eV)
Expt. 4.75 (eV)

The calculated value is underestimated by 0.19 eV.



Binding energy of H, #2

Kinetic energy Potential energy

Non-magnetic state

Ferro-magnetic state

Ferro-magnetic state

Potential energy {(Hartree)
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Non-magnetic state

3 4 5 6 7 8 9 il 3 4 5 6 7 8 9
Bond length {Angstrom) Bond length (Angstrom)

AE;, = 1.11582-0.98309 =0.13273 (Hartree) = 3.612 (eV)
AE =-2.28163-(-1.98139) =-0.30024 (Hartree) = -8.170 (eV)
AV -4.56 (eV)

In fact, one can see that the energy gain follows the virial theorem.

Strictly speaking, the discussion should be corrected in GGA, since the correlation energy includes a part
of the kinetic energy. But the effect is not so large.




Shrinking of Kohn-Sham orbital in H,

The KS orbital shrinks,
and localized around
the bond center,
resulting in the
increase of kinetic
energy.

—— Superposition of two atomic orbitals
—— KS orbital of the lowest state

The superposition of
nucleus potentials at
the bond center
provides a deeper
potential, resulting
in the lowering of
potential energy.

= The energy gain is
obtained.




Difference electron density

increase
decrease

The increase of
electron density can
be seen between
nuclei.

S—~ The electrons obtain
\§§§§§§§§§§257 energy gain due to
— localization at the
place of the deeper
potential.

Difference electron density = (electron density of H2) - (superposition of two H electron density)



Why the FM state is stable when separated ?

Non-magnetic state A ferromagnetic

state becomes stable
at a large

Ferro-magnetic state separation.
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this happens.
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Eigenenergies of HOMO and LUMO
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The HOMO-LUMO gap is
getting smaller as

increasing the bond
distance.

At 5A, it becomes
almost zero.
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Density of states of H, at 3A separation

Blue:

up spin

o

down spin

Eigenenergy (eV)

In the non-magnetic
state the up- and
down states are
degenerate.

In the magnetic
state, we have a
large exchange
splitting between up
and down spin state.
Two electrons
populate only in the
up spin states.

Note: the chemical
potential is set to
zero.




Competition between two energies

For H, at 3A separation, the energy contributions of
the NM and FM states are given by

NM FM
E.,  0.823 0.9634
E..  -1.7306 -1.9148
E,., -0.9076 -0.9514

in Hartree

In the FM state, the increase of the kinetic energy is overly
compensated by the decrease of the potential energy which is
the sum of the Coulomb and exchange-correlation energies.

Why does this happen ?



Molecular orbitals of HOMO and LUMO states

At the equilibrium bond length, isosurfaces of the HOMO and
LUMO states are shown below:

HOMO LUMO

- ‘ ’

LUMO has a node. Thus, the kinetic energy increase if an
electron populates in LUMO.



Reason why the FM state is favored when separated

When an electron is promoted from the HOMO to
LUMO states, the kinetic energy increases,
since the LUMO state has the nodal structure
in the molecular orbital unlike the HOMO
state.

On the other hand, the promoted electron can
be resident in the different orbital.

This leads to the decrease of the potential
energy (Coulomb+exchange-correlation
energies).

Since the total energy is the sum of two
energies, the energetics is determined by the
competition between them. Around 2.0A, there
is the phase boundary.

A similar mechanism will be found in many
materials such as the Stoner condition.

Bond length ("n)

NM FM
Ei. 0.8231  0.9634
Eo  -1.7306 -1.9148

E,.,  -0.9076  -0.95I4

Non-magnetic state

Ferro-magnetic state

0 1 2 3 4 5 6 7 8 9
Bond length (Angstrom)



Electronic structures of simple molecules

To get familiar with analysis of electronic
structure, we analyze simple molecules.

® Methane
® Benzene

® H,0



Hybridized orbitals and molecular structures

sp; hybridized orbitals

Methane
NE)
¢ = —z 7;@,
1 2
¢2:§ —mlp +\/;Zpy
¢._1 1 1
PN Ll J_ J_Z“
6=t L
4= 54 2\/§Zp \/_Zp \/—sz
. . Benzene
sp, hybridized orbitals
¢ = —;{ +\Eﬂcpx
b=y = 1, =
2_\/§Zs \/g}(px \/Elpy
R S
3_\/§Zs \/Elpx \/Elpy
sp hybridized orbitals
Acetylene
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Simple picture of hybridization

Condition E_  +E, <0

prom
E >0
prom( ) Formation of bonding
Promotion of a 2s electron sp; hybridized orbitals Anti-bonding states
—_— ——
4 H
Ebond(<0)
Bondi tat
Atomic ground 4 - A e S
state of C 2%ty X
hol, 1 [
) 2}(5 2\/§le BZpy
@, = 1}( = —=X _i){ +il
2 S Py Py P,
2}(3 2\/§le \/glpy \/EZPZ




Density of states of CH,

DOS suggests sp; hybrid
orbitals may not be formed.

Instead, it is natural to
consider that s, p,, p,s P,
orbitals form the bonding
states with s-orbitals of H
atoms.
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A picture by DFT
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DOS of a benzene molecule

Density of states (1/eV)
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DOS of a benzene molecule

BEsHonE HSSAnHE



Bonding in a benzene molecule

CarbonXé6

Promotion of a 2s electron

| ’ anti-bonding o
" J"j} i states

anti-bonding w
states

bonding w
states

o-bonding consists of s+p,tp,
orbitals. HOMO and LUMO are doubly
degenerate m-states, and HOMO-I1 are
doubly degenerate o orbitals.

bonding o states



DOS and molecular orbitals of H,0

Isovalue=0. 05
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The LUMO
delocalizes
significantly.
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Summary

Understanding the cohesive mechanism is a
starting point for materials science. The virial
theorem provides us a firm basis in understanding
the cohesion. Through the analysis of H, molecule,
we saw how the bonding is formed.

Experiments and theories
Density functional theory
Virial theorem

Bonding in a H, molecule
Electronic structures of
simple molecules



Question time
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