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• Optimization of geometry 

• Force calculation in OpenMX

• Stress tensor

• Steepest decent and Newton-type methods

• Variable cell optimization 

• Enthalpy optimization 

• Nudged Elastic Band (NEB) method

• Molecular dynamics simulations



Optimization of geometry

• Optimization of molecular structures

• Optimization of lattice parameters starting from the experimental structure

• Optimization of internal coordinates while keeping the lattice vectors

• Simultaneous optimization of internal coordinates and the lattice vectors

• Relative stability of absorption sites

• Reaction coordinates, and so on.

For a given geometrical structure, OpenMX calculates the total energy, forces 

on atoms, and stress tensor. By using these quantities, one can perform the 

following calculations:
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Using the gradient at 

R0, we estimate Ropt.



Hellmann-Feynman force ＋ Pulay’s correction

The derivative of energy consists of only the derivative of potential.

In general, Pulay’s correction is needed due to the incompleteness of basis functions

Hellmann-Feynman theorem



Calculation of forces in OpenMX

Easy calc.

See the left

Forces are always analytic at any grid 

fineness and at zero temperature, even if 

numerical basis functions and numerical grids.



Stress tensor

a1=(a11,a12,a13)

a2=(a21,a22,a23)

a3=(a31,a32,a33)

a’1=(a’11,a’12,a’13)

a’2=(a’21,a’22,a’23)

a’3=(a’31,a’32,a’33)
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Strain tensor ε scales the 

Cartesian coordinate as  

Then, the stress tensor 
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can be related the energy derivative 

w.r.t. cell vectors by
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Stress tensor in OpenMX
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Thus, at least there are six contributions to stress tensor. 

• The terms are decomposed to derivatives of matrix elements and overlap stress, 

leading to rather straightforward analytic calculations. 

• The term is analytically evaluated in reciprocal space. 

• The term is analytically evaluated in real space with a carefully derived formula.

The computational time is almost the same as that for the force calculation.

In OpenMX, the total energy is defined by 
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Steepest decent (SD) method

The structure is changed along the steepest decent step by step.

It may not be so efficient.

To quantitatively investigate structural, physical, and chemical properties of 

molecules and solids, it would be important to obtain optimized structures. 

Geometry optimization



Geometry optimization by the SD method

Using “Methane2.dat” in the directory 

“work”, you can trace the calculation.

<Atoms.SpeciesAndCoordinates

1   C      0.300000    0.000000    0.000000     2.0  2.0 

2   H     -0.889981   -0.629312    0.000000     0.5  0.5

3   H      0.000000    0.629312   -0.889981     0.5  0.5

4   H      0.000000    0.629312    0.889981     0.5  0.5

5   H      0.889981   -0.629312    0.000000     0.5  0.5

Atoms.SpeciesAndCoordinates>

Let us change the x-coordinate of carbon 

atom in a methane molecule to 0.3 Å as 

Optimization process

Initial structure Final structure



Relevant output files for the geometry optimization

In met2.out, the history of 

optimization can be confirmed.

By dragging and dropping met2.md to 

OpenMX Viewer, the optimization 

process can be easily visualized. 



By Taylor-expanding, we have

The derivative of the total energy w.r.t. coordinates leads to

By solving the Eq. for Δx, we have

If the Hessian matrix H can be computed, the method is efficient.

However, it may be difficult to evaluate H in general. 

Geometry optimization by Newton-type methods



The geometry optimization in OpenMX is based on quasi Newton 

methods. In Ver. 3.9, the following four methods are available.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

Methods of calculating approximate Hessian matrix H

DIIS          BFGS         RF(rational function) EF(eigenvector following)

H=I BFGS BFGS+RF BFGS plus monitoring 

of eigenvalues of H

If the inner product in the red box is positive, the positive definiteness of H is guaranteed. 

Geometry optimization by Newton-type methods



Approximate initial Hessian by Schlegel  
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Schlegel proposed a way of constructing an 

approximate Hessian. A force constant for every pair 

of elements is fitted to the following formula, where 

dataset were constructed by B3LYP calculations.
H.B. Schlegel, Theoret. Chim. Acta (Berl.) 66, 333 

(1984); J.M. Wittbrodt and H.B. Schlegel, J. Mol. Struc. 

(Theochem) 398-399, 55 (1997).

Suppose the total energy is given by the sum of pairwise potentials. Then, the derivatives 

lead to the following relation:

H BF
where B is the B-matrix of Wilson, H is the approximate Hessian in Cartesian coordinate. 



Molecules Bulks

• The benchmark calculations imply that the EF and RF work well. 

• Large molecules with structural large freedom are hard to get convergence.  

The input file and output files for the benchmark calculations are available 

in openmx3.9/work/geoopt_example". 

Comparison of four methods



Keywords relevant to geometry optimization

The behavior of the quasi Newton methods can be controlled by the following two 

keywords:

MD.Opt.DIIS.History 3 # default=3 

MD.Opt.StartDIIS 5 # default=5 

The keyword 'MD.Opt.DIIS.History' gives the number of previous steps to estimate the 

optimized structure used in the geometry optimization by 'DIIS', 'EF', and 'RF'. The 

default value is 3. 

The geometry optimization step at which 'DIIS', 'EF', or 'RF' starts is specified by the 

keyword 'MD.Opt.StartDIIS'. The geometry optimization steps before starting the 

DIIS-type method is performed by the steepest decent method. The default value is 5.

MD.Type EF # Opt|DIIS|BFGS|RF|EF 

MD.Opt.DIIS.History 3 # default=3 

MD.Opt.StartDIIS 5 # default=5 

MD.Opt.EveryDIIS 200 # default=200 

MD.maxIter 100 # default=1 

MD.Opt.criterion 1.0e-4 # default=0.0003 (Hartree/Bohr)



Variable cell optimization

Let us start optimization of diamond lattice with a displacement as 

The calculation can be traced by “Cdia-RF5.dat” in work/cellopt_example.

Please see also the page 74 in the manual. 

History of optimization

Relevant keywords:



Benchmark calculations of RFC5

For 785 crystals (mostly sulfides) , the full optimization by RFC5 were 

performed by Mr. Miyata, Ph.D student in JAIST, as computational 

screening in searching good thermoelectric materials

The optimization criterion: 10-4 Hartree/bohr

The histogram shows the number of systems among 

785 systems as a function of the number of iterations 

to achieve the convergence 



Optimization of the enthalpy
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Under an external pressure p, the 

structural optimization can be performed 

by minimizing the enthalpy defined with

The stress tensor is easily calculated by 

La3Si6N11: Ce2c

History of optimization 

10 GPa



Finding reaction coordinates:

Nudged Elastic Band (NEB) method

(A) H. Jonsson, G. Mills, and K. W. Jacobsen, in Classical and Quantum Dynamics in  

Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker  

(World Scientific, Singapore, 1998), p. 385.

(B) G. Henkelman and H. Jonsson, JCP 113, 9978 (2000).

In later slides, they are referred as Refs. (A) and (B).

The total energy of a system is a function 

in a hyperspace of (3N-3) dimensions. 

The reaction coordinate is defined by a 

minimum energy pathway connecting 

two local minima in the hyperspace. The 

nudged elastic band (NEB) method is 

a very efficient tool to find the minimum

energy pathway.



Nudged Elastic Band (NEB) method

The NEB method provides a way to find a minimum energy pathway (MEP) 

connecting two local minima by introducing images interacting each other 

located on a trial pathway. 

Taken from Ref. (A). Taken from Ref. (B).



Plain Elastic Band (PEB) method

Taken from Ref. (A).

A simple idea to find a MEP is to introduce an interaction between 

neighboring images by a spring. The optimization of the object function S

tries to shorten the length of MEP.    

The idea is called a plain elastic band 

(PEB) method. However, the PEB 

method tends to cause a drift of energy 

pathway as shown in the left figure. 

One should consider another way to 

avoid the drift of the energy pathway.  



Nudged Elastic Band (NEB) method

The force can be divided to two contributions:  

Parallel force

Perpendicular force

To calculate the 

force, only two 

terms are taken into 

account among 

four contributions.

The treatment allows 

us to avoid the drift of 

energy pathway, while 

the physical meaning 

of the object function is 

not clear anymore.

causing the drift of energy pathway 

upward along the perpendicular 

direction. 

causing non-equidistance  

distribution of images along 

the energy pathway.  



2+2 reaction of ethylene molecules

Optimization history Minimum energy path way 

and corresponding structures



Diffusion of H atom in bulk Si

Optimization history
Minimum energy path way 

and corresponding structures



In usual molecular dynamics 

simulations, the total energy is 

expressed by classical model 

potentials. On the other hand,  

in the FPMD the total energy 

and forces on atoms are 

evaluated based on quantum 

mechanics.

Elecronic states: 

quantum mechanics

DFT

Forces on atoms

Hellmann – Feynman force

Motion of ion: 

classical mechanics

Molecular dynamics methods

It enables us to treat bond formation 

and breaking.

Simulation of chemical reactions

What is FPMD ?



Taylor expansion of the coordinate R at time t

・・・ (1)

Sum of (1)

Diff of (1)

Definition of velocity 

and acceleration

Velocity at t and R at t+Δt are given by 

Time evolution of Newton eq. by the Verlet method



Micro-canonical ensemble

Heat bath Td

Let the part of system be a canonical ensemble.

In case of Td < T: becomes larger   → decelerating

In case of Td>T:                                 becomes smaller → accelerating

Conserved quantity

Temperature control by the Nose-Hoover method



有限温度MDの一つの応用例：
カーボンナノチューブの変形シミュレーション

Observation of buckling of CNT by AFM and STM

M.R.Falvo et al., Nature 389, 582 (1997)

Finite temperature molecular dynamics 

simulation of carbon-nanotubes



Finite temperature molecular dynamics 

simulation of carbon-nanotubes



TO, Y. Iwasa, and T. Mitani, PRL 84, 1712 (2000).

Energy curve and stress at 

15 % compression

Temperature dependence of buckling

0K

300K

有限温度下でのカーボンナノチューブの変形
Deformation of CNT under finite temperature

armchair

zigzag



Exercises

• Perform the geometry optimization of a distorted 

methane molecule. Please follow the guidance in 

the page 69 of the manual. 

• Perform the variable cell optimization of diamond. 

Please follow the guidance in the pages 74-76 of the 

manual. 

• Perform the enthalpy optimization of Si bulk. Please 

follow the guidance in the pages 77-78 of the 

manual.  


