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Optimization of geometry

For a given geometrical structure, OpenMX calculates the total energy, forces
on atoms, and stress tensor. By using these quantities, one can perform the
following calculations:

« Optimization of molecular structures

« Optimization of lattice parameters starting from the experimental structure
 Optimization of internal coordinates while keeping the lattice vectors
 Simultaneous optimization of internal coordinates and the lattice vectors
 Relative stability of absorption sites

 Reaction coordinates, and so on.
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Using the gradient at
Ry, we estimate R.




Hellmann-Feynman theorem
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In general, Pulay’s correction is needed due to the incompleteness of basis functions
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3R = Hellmann-Feynman force + Pulay’s correction
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Calculation of forces in OpenMX
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Stress tensor

a’3=(a’31,a 35,2 33)

a3=(a31,83,,833)

a’,=(a’,,a’5,,a
Strain tensor € scales the
Cartesian coordinate as

r'=(l+¢)r

a,=(251,87,83)

O a’1=(a’11,8’12,8"13)
%, o a,=(a11,812,813)
can be related the energy derivative
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Stress tensor in OpenMX

In OpenMX, the total energy is defined by
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Thus, at least there are six contributions to stress tensor.
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« The terms are decomposed to derivatives of matrix elements and overlap stress,
leading to rather straightforward analytic calculations.

« The term is analytically evaluated in reciprocal space.
Is analytically evaluated in real space with a carefully derived formula.

The computational time is almost the same as that for the force calculation.



Geometry optimization

To quantitatively investigate structural, physical, and chemical properties of
molecules and solids, it would be important to obtain optimized structures.

Steepest decent (SD) method

The structure is changed along the steepest decent step by step.
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It may not be so efficient.



Geometry optimization by the SD method

Let us change the x-coordinate of carbon Optimization process
atom in a methane molecule to 0.3 A as
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Methane molecule
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<Atoms.SpeciesAndCoordinates
1 C 0.300000 0.000000 0.000000 2.02.0
2 H -0.889981 -0.629312 0.000000 0.5 0.5
3 H 0.000000 0.629312 -0.889981 0.5 0.5
4 H 0.000000 0.629312 0.889981 0.5 0.5
5 H 0.889981 -0.629312 0.000000 0.5 0.5
Atoms.SpeciesAndCoordinates>

Using “Methane2.dat” in the directory
“work”, you can trace the calculation.

Initial structure Final structure
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Relevant output files for the geometry optimization

In met2.out, the history of By dragging and dropping met2.md to
optimization can be confirmed. OpenMX Viewer, the optimization
process can be easily visualized.
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History of geometry optimization
GRS HH KR S S KSR SR KK SRS KSR R AR KR Ao

openmx-square.org/viewer/inde %

HMO_iter  SD_scaling |Maximum forcel Maximum step Utot
(Hartree/Bohr) (Ang) (Hartree)

1 1.25981733 0.40873710 0.10583545 -5.09571722

2 1.25981733 0.12000148 0.08000039 -8.16523842

3 1.25981733 0.06115237 0.04076524 -5.18400222

4 1.25981733 0.01811189 0.01207460 -5.18831175

5 3.14954331 0.01076505 0.01794175 -5.18898468

6 3.14954331 0.00576811 0.00961351 -5.18980330

7 3.14954331 0.00355034 0.00591724 -8.13010991

8 3.14954331 0.00255760 0.00426266 -5.19022887

9 7.87385828 0.00218904 0.00912039 -8.19027446

10 7.87385828 0.00863395 0.03597478 -5.19023586

11 1.57477166 0.04692534 0.03910435 -5.18816953

12 1.57477166 0.01357319 0.01131039 -5.19012703

13 3.93692914 0.00406864 0.00847634 -5.19029047

14 3.93692914 0.00915707 0.01907723 -%.19022710

15 0.78738583 0.02067017 0.00861257 -5.18990108

16 0.78738583 0.00721609 0.00300671 -5.19025699

17 1.96846457 0.00255359 0.00265339 -5.13030094

18 1.96846457 0.00163789 0.00170613 -5.13030460 Structural Change

19 1.96846457 0.00105501 0.00109837 -5.19030613 time= 0.000 () Energy= -8.09572 (Hartree)
20 1.96846457 0.00068667 0.00071528 -8.19030671 Exame 1/=8

21 4.92116143 0.00044434 0.00115713 -5.19030697 Fist << < Stop > >> Last
22 4.92116143 0.00138402 0.00360421 -8.19030537 S p—— nwymh
232 0.98423229 0.00427346 0.00222576 -5.19028994 o T ;’::;lﬂ:"
24 0.98423229 0.00078570 0.00040922 -5.19030656

25 Z.46053071 0.00013628 0.00017745% —5.19030709 Supercell X xmA(oms rendering v iR N\nnberS_vmbol BGC Atom Size Bond Thickness Bond Factor
26 Z.46058071 0.00014411 0.00018765 -5.19030714 C’é“sﬁ"ﬂfsagngfg‘gm Zoi‘f_j‘f‘s‘c‘:Tm?ﬁ:f’jﬁﬂ.yﬁj;?ﬁﬁ:ﬁdgﬁfmm o)’;‘;;:;-vwmmkmnv Rownzm
27 0.49211614 0.00015118 0.00003937 -5.190320709

28 0.49211614 0.00008899 0.00002317 -5.13030713



Geometry optimization by Newton-type methods

By Taylor-expanding, we have
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The derivative of the total energy w.r.t. coordinates leads to
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By solving the Eqg. for Ax, we have
k(1) = x(m) _ (fm)y=1g(n).

If the Hessian matrix H can be computed, the method is efficient.
However, it may be difficult to evaluate H in general.



Geometry optimization by Newton-type methods

The geometry optimization in OpenMX is based on quasi Newton
methods. In Ver. 3.9, the following four methods are available.

. A e —1
hew = I'pis + AT Ar = —H “gprs
Methods of calculating approximate Hessian matrix H
DIIS BFGS RF(rational function) EF(eigenvector following)

H=| BEGS BFGS+RF BFGS plus monitoring
of eigenvalues of H

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

Agr)(Agi|  [HipAry) (ArpHy

Hy=Hp 1+
(Agy|Ary,) (Ary|Hi|Ary)

If the inner product in the red box is positive, the positive definiteness of H is guaranteed.



Approximate initial Hessian by Schlegel

Schlegel proposed a way of constructing an A
approximate Hessian. A force constant for every pair F —

of elements is fitted to the following formula, where (r _ B)3
dataset were constructed by B3LYP calculations.

H.B. Schlegel, Theoret. Chim. Acta (Berl.) 66, 333
(1984); J.M. Wittbrodt and H.B. Schlegel, J. Mol. Struc.

(Theochem) 398-399, 55 (1997).
Parameter B for Badger's rule computed at the B3LYP level of theory

Period 1H 2 Li-F 3 Na-Cl 4 K-Br 5 Rb-1 6 Cs-At
1 - (L2573 0.3401 0.6937 0.7126 (18335 0.9491]
2 0.9652 1.2843 1.4725 1.6549 1.7190
3 1.6925 1.8238 2.1164 2.3185
4 2.0203 2.2137 2.5206
5 2.3718 25110

Suppose the total energy is given by the sum of pairwise potentials. Then, the derivatives
lead to the following relation:

v=>¥|¥¥ta+r-nh | H = BF

2i Rn

where B is the B-matrix of Wilson, H is the approximate Hessian in Cartesian coordinate.



Number of optimization steps required for 10 hartree/bohr

Comparison of four methods
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« The benchmark calculations imply that the EF and RF work well.
« Large molecules with structural large freedom are hard to get convergence.

The input file and output files for the benchmark calculations are available

In openmx3.9/work/geoopt_example".




Keywords relevant to geometry optimization

MD.Type EF # Opt|DIIS|BFGS|RF|EF
MD.Opt.DIIS.History 3 # default=3

MD.Opt.StartDIIS 5 # default=5

MD.Opt.EveryDIIS 200 # default=200

MD.maxIter 100 # default=1

MD.Opt.criterion 1.0e-4  # default=0.0003 (Hartree/Bohr)

The behavior of the quasi Newton methods can be controlled by the following two
keywords:

MD.Opt.DIIS.History 3 # default=3
MD.Opt.StartDIIS 5 # default=5

The keyword 'MD.Opt.DIIS.History' gives the number of previous steps to estimate the
optimized structure used in the geometry optimization by 'DIIS', 'EF', and 'RF'. The
default value is 3.

The geometry optimization step at which 'DIIS', 'EF', or 'RF' starts is specified by the
keyword '‘MD.Opt.StartDI1S'. The geometry optimization steps before starting the
DI11S-type method is performed by the steepest decent method. The default value is 5.
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Variable cell optimization

Let us start optimization of diamond lattice with a displacement as

it ams Humber Z

Btoms.SpeciesfndCoordinates.Unit  frac # Ang|al

<htoms.opeciesfindCoardinates

I ¢ 0.10000000000000  O.00000000000000
2 G 0.Z000000000000 O.25000000000000

fitoms . SpecieshndCoordinat es»

ftoms.UnitVectors.Unit fng # Angl Al

<htoms.UnitYectars
1.6400 1.6400 0.0000
1.6400 0.0000 1.6400
0.0000 1.6400 1.6400

fitoms.UnitVectors>

Relevant keywords:

.Type EFCS
LOpt . DIIS.History 3
Lpt.5tartDIIS 7
Lpt .EveryDIIS 100000
.maxlter 100
Timestep 1.0
dpt.criterion 0.0002

Maximum Gradient (Hartree/Bohr)

1e-05
0

-0.05000000000000
0.25000000000000

=2 -2
= =

01}

001}

0.001}

0.0001 |

History of optimization

4 6 8 10 12

Optimization Step

The calculation can be traced by “Cdia-RF5.dat” in work/cellopt_example.

Please see also the page 74 in the manual.
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Mumber of Systems

40

35

£

29

20

15

10

Benchmark calculations of RFC5

performed by Mr. Miyata, Ph.D student in JAIST, as computational
screening in searching good thermoelectric materials
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The optimization criterion: 104 Hartree/bohr

The histogram shows the number of systems among
785 systems as a function of the number of iterations
to achieve the convergence

For 785 crystals (mostly sulfides) , the full optimization by RFC5 were
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Mumber of Iterations
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Optimization of the enthalpy

Under an external pressure p, the

structural optimization can be performed _

by minimizing the enthalpy defined with H — E + pV
The stress tensor is easily calculated by

H B, N
o€ o€ o€ o€ 7
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La,SigN,;: Ce,,

History of optimization .
10 GPa

Maximum force (Hatree/bohr)
3 3
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Finding reaction coordinates:
Nudged Elastic Band (NEB) method

The total energy of a system is a function
In a hyperspace of (3N-3) dimensions.
The reaction coordinate is defined by a
minimum energy pathway connecting
two local minima in the hyperspace. The
nudged elastic band (NEB) method is

a very efficient tool to find the minimum
energy pathway.

(A) H. Jonsson, G. Mills, and K. W. Jacobsen, in Classical and Quantum Dynamics in
Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker
(World Scientific, Singapore, 1998), p. 385.

(B) G. Henkelman and H. Jonsson, JCP 113, 9978 (2000).

In later slides, they are referred as Refs. (A) and (B).



Nudged Elastic Band (NEB) method

The NEB method provides a way to find a minimum energy pathway (MEP)

connecting two local minima by introducing images interacting each other
located on a trial pathway.
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Taken from Ref. (A). A8

Taken from Ref. (B).



Plain Elastic Band (PEB) method

A simple idea to find a MEP is to introduce an interaction between

neighboring images by a spring. The optimization of the object function S
tries to shorten the length of MEP.

P
Pl
S(Ri.Rs. -+ Rp_q) = E E(R;) + E T(Ri — Rg-_l)2
; i=1 <

OS(Ri.Ry. -, Rp_1)

: - 0
IRy

The idea is called a plain elastic band
(PEB) method. However, the PEB
method tends to cause a drift of energy
pathway as shown in the left figure.

. One should consider another way to
Taken from Ref. (A). avoid the drift of the energy pathway.



To calculate the
force, only two

account among F, =
four contributions.

Nudged Elastic Band (NEB) method

The force can be divided to two contributions:
Parallel force

Perpendicular force
P P
Pk o
S(Ry.Ro, - - +Z i-1)’

causing non-equidistance / \ \

distribution of images along
the energy pathway.

JE(Ry)
IR, i

aEspring aEsprillg
IR R, 1

causing the drift of energy pathway
upward along the perpendicular
direction.

The treatment allows
terms are taken into i ) us to avoid the drift of
B OE(Ry) B O FE¢pring energy pathway, while
IR, N IR ' the physical meaning
of the object function is
not clear anymore.



Maximum Force (hartree/bohr)

2+2 reaction of ethylene molecules

Optimization history

0 10 20 30

Optimization Step

hartree)

S

Total Energy

Minimum energy path way
and corresponding structures

N

—-27.85
-27.9
—27.95-
—28-
—28.05-
—-28.1

-2 0 2 4 6 8

Distance from the precursor (bohr)




Maximum Force (hartree/bohr)

Diffusion of H atom In bulk Si

Optimization history
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Optimization Step

Total Energy (hartree)

Minimum energy path way
and corresponding structures

—-33.382

—-33.383

—-33.384

—-33.385
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What i1s FPMD ?

In usual molecular dynamics
simulations, the total energy Is
expressed by classical model
potentials. On the other hand,
In the FPMD the total energy
and forces on atoms are
evaluated based on guantum
mechanics.

It enables us to treat bond formation
and breaking.

Simulation of chemical reactions

Elecronic states:
guantum mechanics
DFT

W

Forces on atoms
Hellmann — Feynman force

o

Motion of ion:
classical mechanics
Molecular dynamics methods



Time evolution of Newton eq. by the Verlet method

Taylor expansion of the coordinate R at time t
dR;(t) 1d2R](t) 9 C e .
Al + At 1
i STy g B 1)
R (t)
dt?

Ryt + At) = Ry(t) +

Sum of (1) Ri(t + At)+ Ri(t — At) = 2R(t) + (At)?

()
dt

Diff of (1) Ry(t+ At) — Ry(t — At) = At

Definition of velocity —, (4) — dR;(1)
and acceleration dt

Velocity at t and R at t+At are given by
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Temperature control by the Nose-Hoover method

Micro-canonical ensemble
Heat bath T,

Let the part of system be a canonical ensemble.

sV i
B 317\ I“-B
1 2
—y — 3NkpT,
| Q ( Z 2m@ B d)
T m, Conserved quantity Q
dp; OU o H = U + Ugp + —C >+ 3NkpT;In s
L q; |
dC 1 p? dln s
- 2 — — 3NEkgT, =
dt Q ( ; 2m,; B d) ‘ dt
In case of T,<T: — ¢ becomes larger — decelerating

In case of T>T: N ( becomes smaller — accelerating



Finite temperature molecular dynamics
simulation of carbon-nanotubes

Observation of buckling of CNT by AFM and STM
M.R.Falvo et al., Nature 389, 582 (1997
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Finite temperature molecular dynamics
simulation of carbon-nanotubes




Deformation of CNT under finite temperature

Energy curve and stress at

15 % compression
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FIG. 1. Buckling of (10, 10) nanotubes, which include 2280

carbon atoms, under axial compression at (a) 0 and (b) 300 K
obtained by O(N) TBMD simulations. These snapshots are at
80% of the initial length (140 A).

TO, Y. Iwasa, and T. Mitani, PRL 84, 1712 (2000).



Exercises

* Perform the geometry optimization of a distorted
methane molecule. Please follow the guidance in
the page 69 of the manual.

* Perform the variable cell optimization of diamond.
Please follow the guidance in the pages 74-76 of the
manual.

 Perform the enthalpy optimization of Si bulk. Please
follow the guidance in the pages 77-78 of the
manual.



