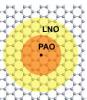
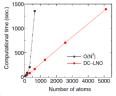
理学系 物理学専攻

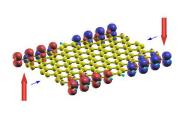
# 尾崎研究室

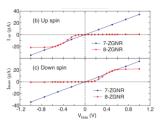



教授 尾崎泰助

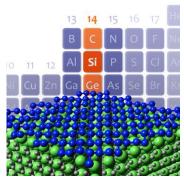

近年の計算機の発展に伴い、物質科学におけるコンピューターシミュレーションの重要性が高まっています。当研究室では基礎方程式から出発し、電子デバイス材料、鉄鋼材料、リチウムイオン電池などの現実物質系の特性を定量的に予測する新しい第一原理計算手法の開発を進めています。第一原理計算の観点から複雑な物質のあるがままの姿を理解し、そして予測していくことが私達の研究目標です。実験に先立つ新物質予測も大きな課題であり、最近ではハイスループット計算によって二次元物質の構造マップを作製し、多数の新構造の予測を行いました。意欲ある方と共に計算物質科学の地平をひろげていきたいと考えています。

大規模シミュレーション手法: 密度汎関数理論に基づきDirac 方程式を数値的に解くことで、 物質の安定性、磁気特性、電子 伝導特性、光学特性等を定量的 に計算することが可能です。ま た計算量が原子数に比例する O(N)法の開発により、従来は 困難であった数千原子系の計算 が実現しています。

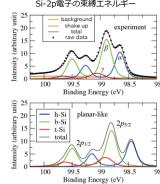

局在自然軌道を導入したO(N)分割統治法の概念図


O(N)法と通常の $O(N^3)$ 法の計算時間の比較






新規スピンフィルターの提案: 磁壁構造を持ったジグザググラフェンナノリボンが二重スピンフィルター効果と名付けた非常に特殊なスピンフィルターとして機能することを理論的に予測しました。 二重スピンフィルター効果とは印加するバイアスの向きに応じて、フィルターされる電子スピンの向きが 反転する現象のことです。この効果はサブ格子内の炭素原子数が偶数の場合にのみ発現し、奇数の場合にはフィルター効果が生じません。実験的な実証が期待されます。






新しい二次元シリコン構造の同定:実験グループと共同で $ZrB_2$ 上にシリコンの蜂の巣構造が形成することを発見。密度汎関数理論による大規模第一原理電子状態計算と実験事実を詳細に比較することで、最終的に $ZrB_2$ 上のシリセン構造の同定に初めて成功しました。 Si-2p電子の東持エネルギー



第一原理計算で得られた構造モデル



実験(上:吉信研)と計算(下)の比較

超並列計算: 「京」コンピュータはおよそ70万コアから構成される超大型並列計算機です。このような大規模な計算機を効率的に利用するためには計算を分散させて実行します。通信効率を高めた新しい並列手法を開発し、超並列計算を実現しました。



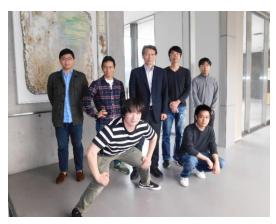
**OpenMXの開発**: 現実に近い状況を高精度にシミュレーションするためには効率的かつ高精度な計算手法が必要です。 私たちは独自の方法論に基づいたソフトウエアOpenMXを開発し、シミュレーションを行っています。

### Welcome to OpenMX

#### Contents

- What's new Winter School in Beijing (Dec. 19-23, 2016)
   2nd Developer's Meeting in Daejeon (Nov. 23-25, 201
   Release of OpenMX Viewer (Aug. 19, 2016)
- What is OpenMX?
- Manual of Ver. 3.
  Manual of Ver. 3.
- Technical Notes
- Video Lectures Publications
- OpenMX Forum
  OpenMX Viewer
- Database of VPS and PAO Ver. 2013
- Miscellaneous informations
  Contributors




我々の開発したOpenMX は東大物性研だけでなく、 世界中の研究者に広く活 用され、様々な応用研究 の基盤ソフトウエアと なっています。

#### Website:

http://www.openmx-square.org/

### 構成員:

尾崎泰助 (教授) 河村 光晶 (助教) 福田 将大 (助教) PD 2名 M1 2名 事務補佐員 2名



### こんな人が私たちの研究室に向いています

- ・現実物質の性質を理論的に解明したい
- ・物理、数学、プログラミングが好き
- ・学際領域にチャレンジしたい

## 研究室見学はいつでも歓迎です

Tel: 04-7136-3285

E-mail: t-ozaki@issp.u-tokyo.ac.jp

場所:物性研A棟A421