Core level binding energies in solids from first-principles

• Introduction of XPS
• Absolute binding energies of core states
• Applications to silicene and borophene
• Outlook

Taisuke Ozaki (ISSP, Univ. of Tokyo)
X-ray photoemission spectroscopy (XPS)

- Information of chemical composition, surface structure, surface adsorbates.
- XPS with synchrotron radiation extends its usefulness, e.g., satellite analysis, core level vibrational fine structure, XPS circular dichroism, spin-resolved XPS, and XPS holography.

We have developed a general method to calculate absolute binding energies of core levels in solids with the following features:

- applicable to insulators and metals
- accessible to absolute binding energies
- screening of core and valence electrons on the same footing
- SCF treatment of spin-orbit coupling
- exchange interaction between core and valence states
- geometry optimization with a core hole state
XPS experiments

Appearance of XPS equipment

In general, XPS requires high vacuum ($P \sim 10^{-8}$ millibar) or ultra-high vacuum (UHV; $P < 10^{-9}$ millibar) conditions.
Escape time of photoelectron seems to be considered around 10^{-16} sec., resulting in relaxation of atomic structure would be ignored.
Surface sensitivity

Fig. 2. Inelastic mean free paths (IMFPs) for 41 elements, calculated using the TPP-2M formula: Li, Be, three forms of carbon (graphite, diamond, glassy C), Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Ge, Y, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Cs, Gd, Tb, Dy, Hf, Ta, W, Re, Os, Ir, Pt, Au, and Bi. Five “outlier” elements are indicated to provide some idea of what electronic structure characteristics can give rise to deviations from the majority behavior: diamond and the alkali metals. The dashed straight line for higher energies represents a variation as $A_e \propto E_{kin}^{0.78}$, and is a reasonable first approximation to the variation for all of the elements shown (from Ref. [23]).

- Inelastic Mean Free Path (IMFP) of photo excited electron for 41 elemental solids is shown the left figure.

- In case of the widely used aluminum K-alpha X-ray having 1486.7 eV, the IMFP is found to be $15 \sim 100 \text{ Å}$.

- On the other hand, when X-rays generated by synchrotron radiation is utilized, which have energy up to 15 keV, the IMFP can be more than 100 Å.
Element specific measurement

- The binding energy of each core level in each element is specific, and by this reason one can identify element and composition in a material under investigation by a wide scan mode, while hydrogen and helium cannot be identified because of low binding energies overlapping to other valence states.
- The database which is a huge collection of experimental data measured by XPS is available at http://srdata.nist.gov/xps/Default.aspx
Physical origins of multiple splitting in XPS

The absolute binding energies of core electrons in solids split due to the following intrinsic physical origins:

- Chemical shift (chemical environment)
- Spin-orbit splitting
- Magnetic exchange interaction
- Chemical potential shift
The binding energy shifts depending on its chemical environment. The amount of shift is primarily determined by its charge state, known as the initial state effect. After creating the core hole, the screening of the core hole becomes an important factor to determine chemical shift, known as the final state effect.
Spin-orbit splitting

In addition to the chemical shift, there are other multiplet splittings.

Spin-orbit coupling of core level

- Due to the strong SOC of core level states, the binding energy is split into two levels.
- The intensity ratio is $2l$: $2(l+1)$ for l-$1/2$ and l+$1/2$, respectively.

\[\text{Intensity (a.u.)} \]

\[\text{Relative binding energy (eV)} \]

Silicene on ZrB$_2$ surface
Core level multiple splitting: Exchange interaction

Exchange interaction between core and valence electrons

- After creation of core hole, the remaining core electron is spin polarized.
- If the valence electron is spin polarized in the initial state, there must be an exchange interaction between the remaining core electron and valence electrons even in the final state.
- The exchange interaction results in multiplet splitting.

- The left figure (A) shows that the 1s binding energy of oxygen and nitrogen atom splits in magnetic molecules O_2 and NO, respectively, while no splitting is observed in N_2 being a non-magnetic molecule.
- The right figure (B) shows the splitting of 3s binding energy of Mn atom in manganese compounds.
The chemical potential in gapped systems varies sensitively depending on impurity, vacancy, surface structures, and adsorbate.

Severely speaking, we need to take account of the effect explicitly by considering realistic models which reflect experimental situations.
Energy conservation in XPS

\[E_i(N) + h\nu = E_f(N-1) + V_{\text{spec}} + K_{\text{spec}} \]
Core level binding energies in XPS #1

\[E_i(N) + h\nu = E_f(N - 1) + V_{\text{spec}} + K_{\text{spec}} \]

Using a relation: \(V_{\text{spec}} = \mu + \varphi_{\text{spec}} \) we have

\[E_b = h\nu - K_{\text{spec}} - \phi_{\text{spec}} = E_f(N - 1) - E_i(N) + \mu \]

The experimental chemical potential can be transformed as

\[E_b = E_f^{(0)}(N - 1) + (N - 1)\Delta\mu - \left(E_i^{(0)}(N) + N\Delta\mu \right) + \mu_0 + \Delta\mu \]

A general formula of core level binding is given by

\[E_b = E_f^{(0)}(N - 1) - E_i^{(0)}(N) + \mu_0 \]

This is common for metals and insulators.
Core level binding energies in XPS #2

For metals, the Janak theorem simplifies the formula:

\[E_f^{(0)}(N - 1) - E_f^{(0)}(N) = \int dn \frac{\partial E_f^{(0)}}{\partial n} = -\mu_0 \]

\[E_b = E_f^{(0)}(N) - E_i^{(0)}(N) \]

The formulae of core level binding energies are summarized as

<table>
<thead>
<tr>
<th>Solids (gapped systems, metals)</th>
<th>[E_b = E_f^{(0)}(N - 1) - E_i^{(0)}(N) + \mu_0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td>[E_b = E_f^{(0)}(N) - E_i^{(0)}(N)]</td>
</tr>
<tr>
<td>Gases</td>
<td>[E_b = E_f^{(0)}(N - 1) - E_i^{(0)}(N)]</td>
</tr>
</tbody>
</table>
Calculations: core level binding energy

Within DFT, there are at least three ways to calculate the binding energy of a core state as summarized below:

1. **Initial state theory**

 Simply the density of states is taken into account.

2. **Core-hole pseudopotential method**

 Full initial and semi-final state effects are taken into account.

3. **Core-hole SCF method**

 The initial and final state effects are fully taken into account on the same footing.

The method 3 can be regarded as the most accurate scheme among the three methods, and enables us to obtain the absolute value of binding energy and splitting due to spin-orbit coupling and spin interaction between the remaining core state and spin-polarized valence states.
Constraint DFT with a penalty functional

\[
E_f = E_{\text{DFT}} + E_p
\]

\(E_{\text{DFT}}\) is a conventional functional of DFT, and \(E_p\) is a penalty functional defined by

\[
E_p = \frac{1}{V_B} \int dk^3 \sum_{\mu} f_{\mu}^{(k)} \langle \psi_{\mu}^{(k)} | \hat{P} | \psi_{\mu}^{(k)} \rangle
\]

\[
\hat{P} = \left| R \Phi_M^J \right\rangle \Delta \left\langle R \Phi_M^J \right| \quad \text{R: radial function of the core level}
\]

The projector is given by a solution of Dirac eq. for atoms.

\[
J = l + \frac{1}{2}, M = m + \frac{1}{2} \quad J = l - \frac{1}{2}, M = m - \frac{1}{2}
\]

\[
| \Phi_j^M \rangle = \left(\frac{l + m + 1}{2l + 1} \right)^{\frac{1}{2}} | Y^m_i \rangle + \left(\frac{l - m}{2l + 1} \right)^{\frac{1}{2}} | Y^{m+1}_i \rangle \quad | \Phi_j^M \rangle = \left(\frac{l - m + 1}{2l + 1} \right)^{\frac{1}{2}} | Y^{m-1}_i \rangle + \left(\frac{l + m}{2l + 1} \right)^{\frac{1}{2}} | Y^m_i \rangle
\]
Kohn-Sham eq. with a penalty operator

By variationally differentiating the penalty functional E_f, we obtain the following the KS equation.

$$\left(\hat{T} + V_{\text{eff}} + \hat{P} \right) |\psi^{(k)}_{\mu}\rangle = \varepsilon^{(k)}_{\mu} |\psi^{(k)}_{\mu}\rangle$$

Features of the method

- applicable to insulators and metals
- accessible to absolute binding energies
- screening of core and valence electrons on the same footing
- SCF treatment of spin-orbit coupling
- exchange interaction between core and valence states
- geometry optimization with a core hole state
Elimination of inter-core hole interaction

\[\rho_f(r) = \rho_i(r) + \Delta \rho(r) \]
\[\Delta \rho(r) = \rho_f(r) - \rho_i(r) \]

- Periodic Hartree potential is calculated by charge density of the initial state.
- Potential by induced charge is calculated by an exact Coulomb cutoff method.
Exact Coulomb cutoff method #1

If the charge induced by a core hole localizes within a radius of R, we can set $R_c=2R$, and the cutoff condition becomes $2R_c<L$ to eliminate the inter-core hole interaction.

$$v_{\text{H}}(r) = \sum_G \tilde{n}(G)\tilde{v}(G)e^{iG\cdot r} \quad \tilde{v}(G) = \frac{4\pi}{G^2} \left(1 - \cos GR_c\right)$$

Jarvis et al., PRB 56, 14972 (1997).
Exact Coulomb cutoff #2

\[v_H(r) = \int dr' n(r') v(|r - r'|) \quad \cdots (1) \]

\[n(r) = \sum_G \tilde{n}(G) e^{iG \cdot r} \quad \cdots (2) \quad v(r) = \sum_G \tilde{v}(G) e^{iG \cdot r} \quad \cdots (3) \]

By inserting (2) and (3) into (1), and performing the integration, we obtain

\[v_H(r) = \sum_G \tilde{n}(G) \tilde{v}(G) e^{iG \cdot r} \]

\(\tilde{v}(G) \) is evaluated by performing the integration as

\[v(r) = \begin{cases} \frac{1}{r} & \text{if } r \leq R_c \\ 0 & \text{if } R_c < r \end{cases} \]

\[\tilde{v}(G) = \frac{4\pi}{G^2} (1 - \cos GR_c) \]

C.A. Rozzi et al., PRB 73, 205119.
Convergence w. r. t cell size

General formula

\[E_b = E_f^{(0)}(N-1) - E_i^{(0)}(N) + \mu_0 \]

For metals

\[E_b = E_f^{(0)}(N) - E_i^{(0)}(N) \]

- Convergence is attainable around 15〜20Å.
- The formula for metals is not applicable for gapped systems.
- Very fast convergence by Eq. (4) for metals.
Difference charge induced by a core hole in Si

- The effective radius is about 7Å.
- The core hole is almost screened on the same Si atom.
Absolute values: Expt. vs. Calcs. for solids

<table>
<thead>
<tr>
<th>Material</th>
<th>State</th>
<th>Calc. (eV)</th>
<th>Expt. (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gapped system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-BN</td>
<td>N-1s</td>
<td>398.87</td>
<td>398.1*</td>
</tr>
<tr>
<td>bulk NH₃</td>
<td>N-1s</td>
<td>398.92</td>
<td>399.0⁺</td>
</tr>
<tr>
<td>Diamond</td>
<td>C-1s</td>
<td>286.50</td>
<td>285.6⁺</td>
</tr>
<tr>
<td>Si</td>
<td>Si-2p₁/₂</td>
<td>100.13</td>
<td>99.8*</td>
</tr>
<tr>
<td>Si</td>
<td>Si-2p₃/₂</td>
<td>99.40</td>
<td>99.2*</td>
</tr>
<tr>
<td>Semimetal or Metal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphene</td>
<td>C-1s</td>
<td>284.23</td>
<td>284.4⁺</td>
</tr>
<tr>
<td>TiN</td>
<td>N-1s</td>
<td>396.43</td>
<td>397.1§</td>
</tr>
<tr>
<td>TiC</td>
<td>C-1s</td>
<td>281.43</td>
<td>281.5*</td>
</tr>
</tbody>
</table>

Mean absolute error: 0.4 eV, Mean relative error: 0.16 %
Absolute values: Expt. vs. Calcs. for gases

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Calc. (eV)</th>
<th>Expt.* (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1s state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>295.87</td>
<td>296.19</td>
</tr>
<tr>
<td>C₂H₂</td>
<td>291.24</td>
<td>291.17</td>
</tr>
<tr>
<td>CO₂</td>
<td>296.89</td>
<td>297.66</td>
</tr>
<tr>
<td>HCN</td>
<td>293.35</td>
<td>293.50</td>
</tr>
<tr>
<td>C₂H₄</td>
<td>290.50</td>
<td>290.79</td>
</tr>
<tr>
<td>H₂CO</td>
<td>294.00</td>
<td>294.47</td>
</tr>
<tr>
<td>N-1s state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td>409.89</td>
<td>409.83</td>
</tr>
<tr>
<td>NH₃</td>
<td>404.70</td>
<td>405.60</td>
</tr>
<tr>
<td>N₂H₄</td>
<td>404.82</td>
<td>406.1</td>
</tr>
<tr>
<td>HCN</td>
<td>406.16</td>
<td>406.36</td>
</tr>
<tr>
<td>NNNO</td>
<td>408.24</td>
<td>408.66</td>
</tr>
<tr>
<td>NNO</td>
<td>411.98</td>
<td>412.57</td>
</tr>
<tr>
<td>NO(S=0)</td>
<td>410.62</td>
<td>411.6</td>
</tr>
<tr>
<td>NO(S=1)</td>
<td>410.10</td>
<td>410.2</td>
</tr>
<tr>
<td>O-1s state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>542.50</td>
<td>542.4</td>
</tr>
<tr>
<td>CO₂</td>
<td>541.08</td>
<td>541.2</td>
</tr>
<tr>
<td>O₂(S=½)</td>
<td>543.15</td>
<td>544.2</td>
</tr>
<tr>
<td>O₂(S=¾)</td>
<td>542.64</td>
<td>543.1</td>
</tr>
<tr>
<td>H₂O</td>
<td>539.18</td>
<td>539.9</td>
</tr>
<tr>
<td>Si-2p state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiH₄</td>
<td>106.56</td>
<td>107.3</td>
</tr>
<tr>
<td>Si₂H₆</td>
<td>106.21</td>
<td>106.86</td>
</tr>
<tr>
<td>SiF₄</td>
<td>111.02</td>
<td>111.7</td>
</tr>
<tr>
<td>SiCl₄</td>
<td>109.32</td>
<td>110.2</td>
</tr>
</tbody>
</table>

Mean absolute error: 0.5 eV
Mean relative error: 0.22 %
Characterization of silicene structure

PRB 90, 075422 (2014).
PRB 90, 241402 (2014).
PRB 95, 115437 (2017).
ZrB$_2$ on Si(111) is a promising substrate for a photo emitting device of GaN due to the lattice matching, metallicity, and flatness. It was found that Si atoms form a super structure during CVD by probably migration and segregation of Si atoms from the Si substrate.

GaN(0001): $a = 3.189\text{Å}$

ZrB$_2$(0001): $a = 3.187\text{Å}$

Top view of optimized structures

- Two buckled structures are obtained.
- Both the structures keep the honeycomb lattice.
Optimized structures

Regularly buckled

- **$E_{\text{bind}} = 1.14$ eV/Si atom**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>hollow</td>
<td>2.105</td>
<td>3.043</td>
<td>2.749</td>
</tr>
<tr>
<td>bridge</td>
<td>2.263</td>
<td>2.268</td>
<td>2.249</td>
</tr>
<tr>
<td>on-top</td>
<td>104.2</td>
<td>110.1</td>
<td>118.2</td>
</tr>
</tbody>
</table>

Planar-like

- **$E_{\text{bind}} = 1.42$ eV/Si atom**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>hollow</td>
<td>2.328</td>
<td>2.331</td>
<td>3.911</td>
</tr>
<tr>
<td>bridge</td>
<td>2.324</td>
<td>2.340</td>
<td>2.380</td>
</tr>
<tr>
<td>on-top</td>
<td>120.2</td>
<td>113.0</td>
<td>80.5</td>
</tr>
</tbody>
</table>

Distances from the top Zr layer (Ang.):

- A: hollow 2.105
- B: bridge 3.043
- C: on-top 2.749

Distance with neighbor Si atoms (Ang.):

- A: hollow 2.263
- B: bridge 2.268
- C: on-top 2.249

Angle with neighbor Si atoms (Deg.):

- A: hollow 104.2
- B: bridge 110.1
- C: on-top 118.2

$a = 3.187\text{Å}$
Expt.
V=100mV

The calculations were performed by the Tersoff-Hamman approximation, and an isovalue of $8 \times 10^{-7} \text{ e/bohr}^3$ was used for generation of the height profile for both the cases.

Regularly buckled

V=+300mV

Si$_B$ is blight.

Planar-like

V=+300mV

Si$_C$ is blight.
The ARPES intensity spectrum is well reproduced by the band structure of planar-like structure more than that of the buckled like structure, especially for S_1, S_2, X_2 and X_3 bands.

C.-C. Lee et al., PRB 90, 075422 (2014).
Domain structure of silicene on ZrB$_2$

- Silicene on ZrB$_2$ spontaneously forms a domain (stripe) structure.
- Release of strain might be a reason for that to reduce the areal density of Si.

The softest mode reaches the “zero” frequency at the M point.

red: silicene black: ZrB$_2$
Eigendisplacement at the M-point with zero frequency

All the Si atoms move nearly perpendicular to the red dot line formed by connecting the top Si atoms.
Avoiding the six M-points with zero frequency

The six M-points can be avoided by changing the BZ as shown below.

\[q' < \frac{q_M}{2} \]

\[q' \times \frac{\sqrt{3}}{2} a \times N = 2\pi \]

\[q_M = \frac{2\pi}{\sqrt{3}} \]

\[4 < N \]

The width \(N \) should be larger than 4 to avoid the six M-points.
Total energy calculations of the domain structures

Energy gain is obtained in case of the width of 4 or 5, being consistent with the experiment.
The XPS data is well compared with the calculated binding energy of planar-like structure. By the Yoshinobu-lab. in ISSP.

C.-C. Lee et al., PRB 95, 115437 (2017).
Characterization of structure by expt. and calcs.

In 2012, a regularly-buckled structure was supposed.

The DFT calculations of ARPES, phonon, and XPS strongly support a planar structure.
β_{12}-Borophene on Ag (111)

In collaboration with the I. Matsuda group in ISSP

Computational model

B-1s binding energies

DFT-GGA

STM images from Feng et al, PRB 94, 041408 (2016).

I. Matsuda group in ISSP
The number of bondings contradicts to the coordination number.
Wannier functions in β_{12}-borophene

Triangular lattice: donor
Honeycomb lattice: acceptor
Exercise 8: binding energy of C-1s in TiC

1. Perform a calculation for the ground state.

Specify the basis function and pseudopotential of C including the 1s state.

```plaintext
Species.Number 3
<Definition.of.Atomic.Species
  Ti  Ti7.0-s3p2d2  Ti_PBE13
  C  C6.0_1s-s3p2d1  C_PBE17_1s
  C1 C6.0_1s_CH-s3p2d1  C_PBE17_1s
Definition.of.Atomic.Species>
```

Input file
https://t-ozaki.issp.u-tokyo.ac.jp/ISS18/input/TiC8-i.dat

2. Perform a calculation for the excited state.

A core hole is introduced in the atom 5.

```plaintext
  <Atoms.SpeciesAndCoordinates
    1 Ti 0.0000000000 0.0000000000 0.0000000000 6.0 0.0
    2 Ti 2.1635000000 2.1635000000 0.0000000000 6.0 0.0
    3 Ti 0.0000000000 2.1635000000 0.0000000000 6.0 0.0
    4 Ti 2.1635000000 0.0000000000 2.1635000000 6.0 0.0
    5 CI 2.1635000000 0.0000000000 2.1635000000 6.0 0.0
    6 C 0.0000000000 2.1635000000 0.0000000000 3.0 0.0
    7 C 0.0000000000 0.0000000000 2.1635000000 3.0 0.0
    8 C 2.1635000000 2.1635000000 2.1635000000 3.0 0.0
  >

Atoms.SpeciesAndCoordinates>
```

Specify a restart file for ρ_i, and apply the exact Coulomb cutoff method.

Input file
https://t-ozaki.issp.u-tokyo.ac.jp/ISS18/input/TiC8-f.dat

3. Calculate the absolute binding energy by either $E_b = E_f - E_i$ or $E_f - E_i + \mu$.
The other relevant keywords for the core hole calculation are given below:

```plaintext
scf.restart                        on
scf.restart.filename        TiN8
scf.coulomb.cutoff          on
scf.core.hole                    on
<core.hole.state
  5 s 1
core.hole.state>

scf.system.charge            1.0       # default=0.0
```

In the final state, the restart files, generated by the initial state calculation, has to be read. The relevant keywords are `scf.restart` and `scf.restart.filename`. Also, the non-periodic charge density is treated by the exact Coulomb cutoff method, specified by the keyword: `scf.coulomb.cutoff`. The core hole is introduced by the keywords: `scf.core.hole` and `core.hole.state`. Also, due to the creation of core hole, the system is charged up by the keyword: `scf.system.charge`.
Specification of Keyword “core.hole.state”

The orbital states

Collinear case

<table>
<thead>
<tr>
<th>s</th>
<th>1: s↑</th>
<th>2: s↓</th>
<th>3:p_z↑</th>
<th>4: p_x↓</th>
<th>5: p_y↓</th>
<th>6: p_z↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>1: p_x↑</td>
<td>2: p_y↑</td>
<td>3: p_z↑</td>
<td>4: p_x↓</td>
<td>5: p_y↓</td>
<td>6: p_z↓</td>
</tr>
<tr>
<td>d</td>
<td>1: d_{3z^2-r^2}↑</td>
<td>2: d_{x^2-y^2}↑</td>
<td>3: d_{xy}↑</td>
<td>4: d_{xz}↑</td>
<td>5: d_{yz}↑</td>
<td>6: d_{3z^2-r^2}↓</td>
</tr>
<tr>
<td>f</td>
<td>1: f_{5z^2-r^2}↑</td>
<td>2: f_{5xz^2-xr^2}↑</td>
<td>3: f_{5yz^2-yr^2}↑</td>
<td>4: f_{5xz^2-xr^2}↑</td>
<td>5: f_{5yz^2-yr^2}↑</td>
<td>6: f_{5yz^2-yr^2}↑</td>
</tr>
</tbody>
</table>

Non-collinear case

<table>
<thead>
<tr>
<th>s</th>
<th>1: J = 1/2 M = 1/2</th>
<th>2: J = 1/2 M = -1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>1: J = 5/2 M = 5/2</td>
<td>2: J = 5/2 M = 3/2</td>
</tr>
<tr>
<td>f</td>
<td>1: J = 7/2 M = 7/2</td>
<td>2: J = 7/2 M = 5/2</td>
</tr>
<tr>
<td></td>
<td>9: J = 5/2 M = 5/2</td>
<td>10: J = 5/2 M = 3/2</td>
</tr>
</tbody>
</table>
Database (2017) of optimized VPS and PAO

For B, C, N, O, Si, Pt, pseudopotentials and basis functions are available to calculate binding energies of core levels.

https://t-ozaki.issp.u-tokyo.ac.jp/vps_pao2017/

The functionality will be released in OpenMX Ver. 3.9.
Outlook

The method based on a penalty functional and an exact Coulomb cutoff enable us to calculate absolute binding energies of core levels in solids with the following features:

- applicable to insulators and metals
- accessible to absolute binding energies
- screening of core and valence electrons on the same footing
- SCF treatment of spin-orbit coupling
- exchange interaction between core and valence states
- geometry optimization with a core hole state

By applying the method for silicene on ZrB$_2$, we have obtained a conclusive agreement between the experiments and calculations.