Relativistic effects and non-collinear DFT

 What is relativistic effects?

« Dirac equation

« Relativistic effects in an atom
« Spin-orbit coupling

e Hund’s 3" rule

* Orbital magnetic moment
 Non-collinear DFT

» Relativistic pseudopotentials
 Non-collinear DFT+U method
« Constraint DFT

« Examples
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Relativistic effects

Difference between Schrodinger and Dirac equations

Large for heavy elements

Correct prediction of d-band which is important for catalysts
Spin-orbit coupling leading to many interesting physics:

YV V VYV

 Anisotropy energy of magnets
 Orbital magnetic moment
 Rashba effect
 Topological insulators
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Dirac equation

A ( A
(:ﬂ: —eV — -m..c':z) ) =co-(p+ cA) ™
92 \ P4 Large components  Small components
£ [ P1 P3
(Ef — eL’r -+ 'Hl(’?) L = CO - (p -+ E?A) L - -
P4 \ P2 2 4

Paull matrices
({01 0 —;g (1 0
Ul_(l U) JE:(E’- 0) "’3‘(0—1)

« Under the Lorentz transformation, the equation is invariant.

e.g., in case two coordinate systems move with a relative velocity v along x-direction

: r ! . r__f + U :.I!_-..r
=Ty = 2 f=tar
|II 1-'2 III]_ _ 'L'Q
yi-= Vi—-=

* |t contains the first order derivatives with respect to space and time.

« It includes spin automatically without ad-hoc treatments.



Equations for atom

Schrodinger 142 1(1+1) _
equation {—5([_?2 | 5,2 T 1] P =culy

Dirac equation
1 d? a2 dV d a®? kdV  k(k+1) A
[ ( — — | +V (;n!j — Enﬂj(}nﬂj

oM (r) \ dr2 + M (r) dr dr + DM (r) r dr r2
7] =1— % k=1 Degeneracy: 2| a = 1/c (1/137.036 in aw.).
j =1+ % vk = —(l + 1) Degeneracy: 2(I+1) M(r) = 1+“2(E"‘f;_""r)_

Scalar relativistic equation
1 d? a’> dV d a2 1dV 1.
[_ ( r ) - 1] Grij = enjGrij

+ . — _
2M(r) \dr? ~ 2M(r) dr dr  2M(7)r dr
By considering the degeneracy, a mean k can be calculated as
By inserting the mean « into the Dirac eq.,

IxA—(1+1)x20+1)
one can derive the scalar relativistic equation.

2A+2(1+1)
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Relativistic effect for s-states:

1s and 6s radial functions of Pt atom

Red: Schrodinger
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Schr‘oldinger: 1z —
Scalar relativistic: 1s

The radial functions of
1s-state shrinks due to
the mass and potential
gradient terms.
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The radial function of 6s state has
a large amplitude in vicinity to

the nucleus because of
orthogonalization to core states
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All the s-states shrink due to the mass and potential gradient terms.



Radial function

2p and 5p radial functions of Pt atom

Red: Schrodinger

.Schmdinger‘lt 2p —

199 | Scalar relativistic: 2p i Scalar relativistic: Sp
A
) /€ =— The radial functions of 1
2p-state shrinks due to
"t the relativistic effect s S~
ol '-.\l\ Originating from the ::f [l % T T N PR — —
mass and potential =t The 5p state has a large amplitude |
: gradient terms. | .l ¥ invicinity to the nucleus because
o I | of orthogonalization to core states
: - - e - - Y — - - - - - :
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Relativistic effect for p-states:
All the p-states shrink due to the mass and potential gradient terms.
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Relativistic effect for d-states:

3d and 5d radial functions of Pt atom
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Scalar relativistic: 3d | Scal lativistict 5d
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@ The radial function of sp
3d-state shrinks due to
g |
the relativistic effect. \%____
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\ Tl increase of screening by
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There is a competition between the relativistic effect and screening effect by core
electrons. In case of the 5d-state, the screening effect is larger than the former.



4f radial function of Pt atom

Red: Schrodinger

Schr‘ndilnger*: 4 —
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!\ The 4f-state delocalizes
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Relativistic effect for f-states:

Radial function

The screening effect is dominant, resulting in delocalization of f-states.



Eigenvalues of Pt atom

Eigenvalues (Hartree) of atomic platinum calculated by the It turns out from the comparison between
Schradinger equation, a scalar relativistic treatment, and a fully ‘sch’ and ‘sdirac’ that

lativistic treat t of Di ti ithin GGA to DFT. -
reTATIVISHC TredTment oF DIt equation Wwitin =520 - The eigenvalues of the s- and p-states are

state|  sch sdirac dirac always deepened by the relativistic effect.
12 F12 * The eigenvalue of the 3d, 4d, 5d, and 4f
15 ||-2612.2560|(-2876.3416 ||-2868.8960 states become shallower.
2s || -434.7956 || -505.1706 | -503.1143
2p || -418.0254 || -438.1804 || -419.1547 ||-482.3721 Scalar relativistic effects

3s || -101.2589 || -118.6671 || -118.0772
3p || 933171 || -99.1367 || -94.8406 ||-108.7310
3d || -78.3951 || -77.8404 | -76.1768 || -79.1639
45 || -21.1326 || -254989 | -25.3346
4p || -17.7166 || -19.0862 | -18.0570 || -21.3626
4d || -11.4203 | -11.2646 | -10.9124 || -11.5257

« The mass and potential gradient terms
affect largely core electrons, leading to
localization of those electrons.

« Even the valence s- and p-states
localize due to the orthogonalization to
the core states.

o 30221 | 2070 | 24568 | 25821 - The d-states are affected by both the

oS | 29987 || 37923 | 3698 localization effect and screening effect

5p | -1.8756 || -2.0571 | -1.8911 || -2.43384 with the core electrons.

°d | 02656 | 0.2259 | -0.2020 ] -0.24966 « The 4f-state is mainly affected by the

6s | 01507 || 02074 | 02079 screening effect of the core electrons.




Spin-orbit coupling

The Dirac equation has a dependency on « or j, the dependency produces a coupling
between | and spin quantum number. This is so called ‘spin-orbit coupling’.

Dirac equation

1 d? a? dV d a®> kdV  k(k+1) s f
Y 9 + 7 - T 7 — - 9 +V 'anj — EanC—Tnlj
2M (r) \ dr 2M(r) dr dr — 2M(r)r dr r
7] =1— % ko= 1 Degeneracy: 2| a = 1/c (1/137.036 in a.u.).
. ) 2~
] =1+ % w = —(l + 1) Degeneracy: 2(I+1) Mr) = 1+2 ("”g V),
Ptatom
state sch sdirac dirac L
o SO-splitting
15 ||-2612.2560||-2876.3416||-2868.8969 O
2s || -434.7956 || -5051706 || -503.1143 O ° _ 7 7
e 301 The core states have a large SO-splitting.
3s || -101.2589 || -118.6671 || -118.0772 0
3p | 933171 || -99.1367 || -94.8406 |-108.7310 13.8904

3d || 783951 | 77.8404 | 761768 || 79.1659 2.9891 e The S'Stage has no SO—SpIIttlng

4s || -21.1326 || -25.4989 | -25.3346 0

4p | 177166 || -19.0862 || -18.0570 || -21.3626 3.3056

4d | 114203 | 112646 || 109124 | 115267 0.6133 » The SO-splitting decreases in order of p-,

4 || -3.0221 225775 24568 | -2.5821 0.1253

5s | 29387 | 37323 | 36083 0 d', f-... . when they arc Compared Ina

5p || -1.8756 -2.0571 -1.8911 || -2.43384 0.5427 nearly same energy regime

5d || -0.2656 0.2259 02020 | -0.24966 0.0477

Gs -0.1507 -0.2074 -0.2079 0




Total energy (Hartree)

First-principle calculations of Hund’s 3" rule

By changing relative angle between spin and orbital moments, one can
calculate how the total energy varies depending on the angle, leading to
a direct evaluation of Hund’s third rule.
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-46.838 :

-46.83821
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Relative angle (Deg) between spin and orbital

Total energy (Hartree)

T

-143.97
-143.972F
-143.9741

-143.976f

Relative angle (Deg) between spin and orbital

Less than half in the shell structure = The anti-parallel is favored
More than half in the shell structure = The parallel is favored



Orbital magnetic moment

The orbital moment for localized electrons can be calculated by projecting wave
functions onto the local angular momentum operator on each site as follows:

Ly = / AEY Y F(B) (el |10} 6(F — 21),
k v
= [aEES X 1B) [(eliolei) + (e i le)] 0(F - ),
Kk v
. * | g 87 ) i
- Z Z -'I‘ (Ekﬂ Z pi:;; “.;;r ku‘ ik’ ({Jg& |f |{-":;§:.:.’> —I_ {ky K 7‘k;_,-r ir! {(:) |E | ?H >
L
H-j H'rf
- Z .“:iij?ﬁ q*}*m |£TJ|¢ ) + ff}zh ik { mlz |¢}1€n"}3
jl.fr_g ﬂ-‘-ra
Compound OpenMX  Other cale. | OpenMX  Other cale.| Expt. in total
MnO 4.560 4.491] 0.001 0.000] 4.79.4.58
FeO 3.586 3.540] 1.010 1.01M 3.32
CoO 2.685 2 530 1.137 1.19(4 3.35 3.8
NiO 1.603 1.5301 0.171 0.2701] 1.77.1.64.1.90
G a,FeC}a (GGFF) 3.950-3.956 0.020-0.021
GaFeO,; (GFFF) 3.923-4.001 0.020-0.022

[1] A. Svane and O. Gunnarsson, Phys. Rev. Lett. 65, 1148 (1990).
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Spin-orbit splitting

e.g., GaAs
7 Wit\r})utSOIw 105</ \W/ith SOI_@U
Y] RREX
e A e AN N =N
Iy

NN NN
I I (a) - 10 + | (b) -
g X W L g _15!; X W L g

Level OpenMX LMTO® PP® Expt.

['v5, 0.348 0.351 035 0.34

L3y 0.218 0.213  0.22

(@) M. Cardona, N. E. Christensen, and G. Gasol, Phys. Rev. B 38, 1806 (1988).
(b) G. Theurich and N. A. Hill, Phys. Rev. B 64, 073106 (2001).



Simplification of Dirac eq. (1)

cmevom)(2) = en ()
L P4

Feveme) () —orpren)( 7
v P2

e =me*+ &
Assuming that

() 'l [P
| < mc? > (tg)*(il)
4 C \ ¥2

With the assumption, the Dirac eq. can be simplified as
{L(DJreA) L By } (Pl ) = ( 7l )
2m 2m o ©2

It looks Schrodinger eq., but the wave function is a two-component spinor.




Simplification of Dirac eq. (2)
By expanding explicitly the simplified eg., we obtain

1 ﬁ’ ] el
AP+ —oc- B4V 7] = (7
{Zm(p—l_t )’ +2ng * }(f?z) (%‘3)

{——\7‘3 + —B l—l— B —ﬁcr + Diamagnetic term + V} ( 1 ) = £ ( ¥l )

21m 2m o))

This has the Zeeman and diamagnetic terms, but unfortunately
does not take account of the spin-orbit interaction.

By ignoring the diamagnetic term, and giving j-dependence
of V, we get the following eq:

(v inaiin ) (2) - o(2)
2m 2m 0o) 2

This Is the equation employed in a widely used non-collinear
DFT method.



Relativistic pseudopotential

Radial Dirac eq. for the majority component

1 d? a2 dV d > kdV  k(k+1)
I - — e — 1r Told =
[2*"‘"{('3'") (dTE T 2M(r) dr dr - 2M(r) r dr r2 T Enlj Gnij =0

az{fnij - Ir}
2

For each quantum number j, the Dirac eqg. is solved numerically,

and its norm-conserving pseudopotential is constructed by the MBK scheme.

The unified pseudopotential is given by

h'.:fand.*::—lzi—k]]furjzf—%andjzf+%

r _r'{+ "?
I"fpﬁ [l@ IP": | + |{I) Fiﬁ |]

.i.'m

with the analytic solution for spherical coordinate:

where for JJ =1+ % and M =m 4+ %

. F+m+1 . I —m 5 T
@)} = (ﬁ) |1{ﬂr|:'|“}+(, ) Y 8),

and for J' =1 — % and M' = m — :I,

l.
@Yy = (—; ){”J:l) 1;**-'}|ﬂ}—(f+"”)'|1;‘*"}|:>*';.




Non-collinear DFT (1)

Two-component spinor W’u) — “ﬁﬁ”) 4+ |%9§5);
The charge density operator is defined by

o ' ny 0 e
n = E v ’ ( 0 ﬂ’) - o

— U ( Moo Mag ) ”"rl
n P '”_.'iﬁ
The total energy is a simple extension of the collinear case.

: - 1 n'(r)n'(r'
Eow = 3. 3 fuleflTIel) + ;/ Wyt Mgt + E/f |(FJ_I£| ) dodv! + Bye {noor }

og=a.3 ¥

Yu) (v

The variation of wave functions leads to

aF U
Hic,oﬁ‘-"

o :} T —|_ ! 0y —|_ 11:-[—1 + I_,:ﬁfl' “;{1,3 + Ir}:ﬁ,g pﬁ J— £ kflj::
] 73 T ) T8 Al - H A3
=0 Wpa + Ve I +wgs+ Vi + Vi P P

HJ'c,a:-ﬁ"




Non-collinear DFT (2)

The spin-1/2 matrix gives us the relation between the spin
direction in real space and spinor.

e First, rotate # on the y-axis — exp (—?%‘9)

e Second, rotate ¢ on the z-axis — exp (

2
U
" nh 0
Condition UnUt = T .
0 n)
We would like to find U which diagonalizes the matrix n,
after algebra, it is given by
| Im n,g4
@ = —arctan -
€ Mg
(E{HE Nag cos(¢) — Im ngg sin{qtt]])
i = arctan :
N — Mga
ny = %{ﬂ_fm + ngg) + %[-nrm —ngg)cos(f) + (Re nygcos(¢) — Im nggsin(¢)) sin(#)

, 1 1 e
n, = ﬁ{ﬂ.fm + ngg) — E(nm —ngg) cos(f) — (Re nygcos(¢) — Im nggsin(¢)) sin(#)

= lexp | —i— |exp| —i—

0



LDA+U within NC-DFT

In conjunction with unrestricted Hartree-Fock theory, we introduce a Hubbard term.

Eipa+u = Eipa + Eu

Starting from the diagonal occupation matrix, a rotational invariant
formula can be obtained even for the NC case.

1 i
Ey = 5%:{,-',,. [Tr(a,,._mz,.;ﬂ) —'Tr(A,,.f\-'_{,.Alﬂ,;h’,,.;ﬂ]],

= % Z L"T,‘; [Tr(ﬂ,q} - TT('”,‘; ﬂ',‘i)] ;

r !
_ ! U neo . — n%7 n?c
- 0 & ‘&, TN sonm!' rsomim |
§

am arm,a’m'
The occupation number operator is given by

1

'ﬁfj.j;;”, = 3 (|3-'.-:7;r,a)(s-m’n’| + |S'."HJ><.‘§TI;:"J"|)

K

Then, the effective potential operator becomes

l pe
vo= 3 Z Z [|3*.-’.7m)-?:ﬁf:;mm: (sm'c’| + |3'ma}-'nﬁf;mm, {sm'c’ |] )

aga’ smn’



Constrained NC-DFT: a harmonic constraint

Each atomic site, (2 x 2) occupation matrices are constructed:

From two-component spinor Constraint matrix

, NN f (N, 0\
N o= (e Mo ) N — g 0T T g
A ( Nga Nps ) Yo ( 0 N ) Vo

Then, a constraint energy can be calculated by the following
energy functional:

E. = o Z Tr ((Ni — Ng(ﬂ})g)

By specifying the spin direction and the magnitude at each site,
one can control spin (orbital) magnetic moment self-consistently.



The effective Hamiltonian
due to the constraints and LDA+U

The effective Hamiltonian due to the constraints
and LDA+U take the same form

= — Z > [ smoyld . (sm'c!| + |smoyld . (sm'c’ ” .

2 o’ smm’

oo’ oo’ oo’

1eijf smm’ — IU smm/’ + lmnatramt smm’

Thus, we only have to add each contribution,
leading to that the implementation makes easier.



Hartree)

Total Energy (

Example: a harmonic constraint

/-
121.72 14
7p]
=]
=3
S
= 121.74 ¢ i =
3
I
Q
-121.76 | E
Crzdlmer \72
-121.78 ' |
0 30 60 120 150 180
Relative Angle(g)

The spin direction is controlled by the harmonic constraint,
and the spin moment is also determined self-consistenly.



bcec-Fe with various spin states

To take account of spin structures with E — E (0) + E
arbitrary direction and magnitude, the DFT DFT CS
total energy is calculated by a constraint

CS)\2
scheme within non-collinear DFT ECS — VZTI’[(Ni o Ni( )) ]
(GGA). | i |

BCC

-124.49 |

AFM (2.0pp)

1245 -
- FM (1.8ug)

FM (3ug)

Total energy (Hatree/atom)

12451 L\

FM (no constraint) 1

9 10 11 12 13 14 15 16
Volume (A3/atom)



Anisotropy and magnetization in magnets
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Crystal structure of FePt

PtFe alloy is known to have three ordered phases.

L1,-Fe,Pt = Ferromagnetic
L1,-FePt = Ferromagnetic with high anisotropy
L1,-FePt, = Anti-ferromagnetic

Expt. Expt. Expt.
a=3.734A a=3.86A, c=3.725A a=3.864A



Exercise 7: Anisotropy energy of L1,-FePt

1 Lattice
4 constant from
1 EXxpt.

| |
90 120 150

Theta (Degree)

4 MAE (meV/f.u.)
OpenMX 2.1
VASP 2.6

\_ EXpt. 1.1 y

* R.V. Chupulski et al,
APL 100, 142405
(2012)



Relevant keywords for constraint scheme

To calculate an electronic structure with an arbitrary spin orientation in the non-
collinear DFT, OpenMX Ver. 3.8 provides two kinds of constraint functionals which
give a penalty unless the difference between the calculated spin orientation and the
initial one is zero. The constraint DFT for the non-collinear spin orientation is
available by the following keywords:

scf.Constraint.NC.Spin on  # on|on2|off, default=off
scf.Constraint.NC.Spin.v. 0.5  # default=0.0(eV)

The constraint is applied on each atom by specifying a flag as follows:

<Atoms.SpeciesAndCoordinates
1 Cr 0.00000 0.00000 0.00000 7.0 5.0-20.00.0 1 off
2 Cr 0.00000 2.00000 0.00000 7.0 5.0 20.00.0 1 off
Atoms.SpeciesAndCoordinates>

See the manual for the details at

http://www.openmx-square.org/openmx_man3.8/node106.html



Outlook

The scalar relativistic effects

 Shrinking of core states by the mass and potential gradient terms
 Delocalization of valence electron due to screening by
localization of core electrons

The spin-orbit coupling bridges real and spin spaces
and produces many interesting physics such as

e Hund’s 3" rule

« Orbital magnetic moment

« Magnetic anisotropy in magnets
« Topological insulators

» Rashba effect

« etc.



