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Towards first-principle studies for industry

System size
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102 atom

103 – 106 atom

Many applications done.

There are many successes 

even for material design.

DFT calculations of thousands atoms

is still a grand challenge.

O(N3)            Low-order

DNA Battery

Steel



Materials properties

 Materials properties of actual materials are determined by intrinsic

properties and secondary properties arising from inhomogeneous 

structures such as grain size, grain boundary, impurity, and precipitation. 

 In use of actual materials, the materials properties can be maximized by 

carefully designing the crystal structure and higher order of structures . 

http://ev.nissan.co.jp/LEAF/P

ERFORMANCE/

e.g., the coercivity of a permanent magnet of 

Nd-Fe-B is determined by crystal structure, grain 

size, and grain boundary. 



Summit in ORNL:  187 Peta flops machine

Cores: 2,282,544+NVIDIA Tesla V100 GPUs

Rmax:  122,300.0 (TFLOP/sec.)

Pmax:  187,659.3 (TFLOPS/sec.)  

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, 

NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM 

DOE/SC/Oak Ridge National Laboratory, United States



Top 500
http://www.top500.org/

According to Moore’s law…

2028

~1017

~1019

The machine performance may reach to 10 Exa FLOPS around 2028. 



How large systems can be treated 10 years later?

Summit 10 years later
~100 PFLOPS 10000 PFLOPS

The performance increase is about 100 times. 

Computational 

Scaling O(Np)
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The applicability of the O(N3) DFT method is extended to 

only 5 times larger systems even if Moore’s law continues.



O(N3)

O(N log(N))

O(N2)

Red characters indicate 

the computational order 

of each calculation.

The largest order 

appears in the 

diagonalization, and the 

whole computational 

order asymptotically 

approaches to O(N3).

O(N)

Mathematical structure of KS eq.

3D coupled non-linear differential equations have to be 

solved self-consistently.



Density functional as a functional of n

If basis functions are localized in real space, the number of elements 

in the density matrix required to calculate the total energy is O(N).
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The fact leads to reduction of computational order if only the 

necessary elements can be calculated. 

Density functional can be rewritten by the first order reduced density matrix: ρ

Electron density ρ(r) is calculated by the 1st order reduced density matrix. 



Two routes towards O(N) DFT

Conventional 

representation

Density matrix

representation

Wannier function

representation

ψ: KS orbital

ρ: density

φ: Wannier function

n: density matrix

The conventional expression of total energy in DFT is written by electron 

density and KS orbitals. It is possible to rewrite the energy expression using 

either density matrix or Wannier functions without introducing approximations. 

It might be possible to reduce the computational order by taking account 

of locality of density matrix and Wannier functions in real space. 



Wannier functions and density matrix
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Wannier functions      can be obtained by an unitary transformation 

of Bloch functions ψ.


for cases with a gap
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Density matrix is obtained through a projection operator of Bloch 

functions ψ

where the matrix representation is given by 



Locality of Wannier functions

O-2px in PbTiO3
An orbital in Aluminum

Exponential decay

Decay almost follows a power low 

J.Battacharjee and U.W.Waghmare, PRB 73, 121102 (2006).

Wannier functions decay exponentially for semi-conductors and insulators, while 

for metals they decay algebraically. A mathematical analysis for 1D systems is 

found in He and Vanderbilt, PRL 86, 5341. A conditional proof for general cases 

is discussed in Brouder et al., PRL 98, 046402. 



Locality of density matrix

Finite gap systems

exponential decay

Metals

T=0 power law decay

0<T exponential decay

D.R.Bowler et al., 

Modell.Siml.Mater.Sci.

Eng.5, 199 (1997)

At T = 0 K, the density matrix elements decay exponentially for semi-conductors 

and insulators, while for metals they decay algebraically. For a finite temperature, 

they decay exponentially even for metals. A mathematical analysis is found in 

Ismail-Beigi et al, PRL 82, 2127.



Various linear scaling methods

Wannier functions (WF)

Density matrix (DM)

Variational (V)

Perturbative (P)

At least four kinds of linear-scaling methods 

can be considered as follows:

DM+PDM+V

Orbital 

minimization 
by Galli, Parrinello, 

and Ordejon

Hoshi

Mostofi
Density matrix
by Li and Daw

Krylov subspace
Divide-conquer

Recursion

Fermi operator

WF+V WF+P



O(N) DFT codes

OpenMX: (Krylov)  Ozaki (U. of Tokyo) et al.

Conquest: (DM)  Bowler(London), Gillan(London), 

Miyazaki (NIMS)

Siesta: (OM)  Ordejon et al.(Spain)              

ONETEP: (DM) Hayne et al.(Imperial)

FEMTECK: (OM) Tsuchida (AIST)

FreeON: (DM) Challacombe et al.(Minnesota)



Basic idea behind the O(N) method

Assumption

Local electronic structure of each atom is mainly determined 

by neighboring atomic arrangement producing chemical 

environment.



Convergence by the DC method

Insulators, semi-conductors

Just solve the truncated clusters → Divide-Conquer method

W.Yang, PRL 66, 1438 (1991)

Metals

For metals, a large cluster size is required for the convergence.

→ Difficult for direct application of the DC method for metals



TO, PRB 74, 245101 (2006)

O(N) Krylov subspace method

Two step mapping of the whole Hilbert space into subspaces



O(N) methods based on Krylov subspace

• Based on Lanczos algorithms

• Based on a two-sided block Lanczos algorithm

• Based on an Arnoldi type algorithm 

R. Haydock, V. Heine, and M. J. Kelly, J. Phys. C 5, 2845 (1972); R. 

Haydock, Solid State Phys. 35, 216 (1980). 

T. Ozaki, Phys. Rev. B 59, 16061 (1999); T. Ozaki, M. Aoki, and D. G. 

Pettifor, ibid. 61, 7972 (2000).

T. Ozaki and K. Terakura, Phys. Rev. B 64, 195126 (2001). 

T. Ozaki, Phys. Rev. B 64, 195110 (2001).

T. Ozaki, Phys. Rev. B 74, 245101 (2006).



Power method

Can we obtain a convergent result by repeatedly multiplying a random vector 

by an Hermite matrix H?

v1 = Hv0

v2 = Hv1

・・・
vn = Hvn-1

v∞ → ???

The initial vector v0 can be rewritten by a linear combination.

v0 is multiplied by H n-th times. 

Thus, we see that it 

converges to the vector 

corresponding to the 

largest eigenvalue. Also, 

it is found that degenerate 

cases may lead to slow 

convergence. 

ε0 is the largest 

eigenvalue in its 

absolute value.



What is the Krylov subspace?

 2 3
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The Krylov subspace is defined by the following set of vectors:

The Krylov subspace methods try to solve the eigenvalue 

problem within the subspace, while the power method takes 

account of only a single vector. 

The Lanczos method is one of the most widely used technique 

based on the Krylov subspace. 



Lanczos method

The Lanczos method is an algorithm which generates a Krylov subspace by 

choosing a vector orthogonal to a subspace generated by the previous step. 

By repeating the algorithm, one can expand the Krylov subspace step by step. 

Idea

Tri-diagonalizaton of a Hermite matrix.  

Cornelius Lanczos, 

1893-1974

How can we find the unitary matrix? Quoted from http://guettel.com/lanczos/



Derivation of Lanczos method #1

Writing HTD=U†HU explicitly, .. 

We further write column by column.

1

Then, one has the following three terms recurrence formula:

+1



Thus, starring from a given u0, we can recursively calculate un.

The process can be summarized as the following algorithm. 

=

+1

+1

Derivation of Lanczos method #2



Relation between Lanczos method and Green’s function #1

Using the tri-diagonal matrix obtained from the Lanczos

transformation, we have an useful expression. 



The determinant for the tri-diagonal matrix can be expressed by a recurrence formula.

In general, 

Using the recurrence formula, 

one can evaluate the diagonal 

term of Green’s function. Finally, we have a continued fraction.

which is called Laplace expansion.

Relation between Lanczos method and Green’s function #2



Green’s function and physical quantities

Let’s us calculate the imaginary part of Green’s function. 

Integrating the imaginary part

The following is a plot of the 

imaginary part.

Thus, 

The imaginary part of diagonal part of Green’s function is the density of states. 



A mathematical analysis on 

accuracy of O(N) methods



1D tight-binding model #1

φ0φ-1 φ4φ3φ2
φ1φ-3 φ-2φ-4

φ0 φ1 φ2 φ3φ-1 φ-2 φ-3

φ0

φ1

φ-1

φ2

φ-2

By analyzing a 1D-TB model, we discuss accuracy of O(N) methods for gapped 

and metallic systems. 

By assuming that the on-site energy is a, and the nearest hopping integral is b, 

we have the matrix representation above. 



By applying the Lanczos algorithm to the 1D TB, we transform the model to 

a semi-infinite model. The following is the procedure. (1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

A similar calculation 

continues. 

In summary, 

n a  Arbitrary n

1 2

n

b

b







 n≠1

1D tight-binding model #2



In summary

n a 

1 2

n

b

b







 n≠1

Orthogonal bases are generated starting from the 

initial site, and hopping to the next sites. 

Any system can be 

transformed to a 

semi-infinite chain 

model using the 

Lanczos algorithm. 

1D tight-binding model #3

Arbitrary n



(1) The diagonal term of Green’s function is express by a continued fraction. 

(2) The off-diagonal term of Green’s function is express by a recurrence formula.

The case of K=2 is the 

DOS of the 1D model.

Noting the similarity 

structure, the last term 

is obtained. 

1D tight-binding model #4
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The off-diagonal term can be expressed by GL
00 via the recurrence formula.  

By Taylor-expanding GL
00 around γ-1 =0, one has 
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By inserting the Taylor-expanded GL
00 to GL

0n , one obtain the following leading term.
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Under the condition, GL
0n converges to zero as n → ∞.

1D tight-binding model #5



The density matrix n0i is defined by 

0 0 ( ) ( )nn dE n E f   

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Rewriting the expression above by Green’s function, we have
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1
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Using the Cauchy theorem, the integral 

path can be changed. 
Noting that the Fermi function 

has the Matsubara poles, we can 

derive the following formula.
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1D tight-binding model #6



Asymptotic behaviors of G0n
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where y is defined 

by the Fermi 

energy μ and a 

band width of w.

In the red circle, the Green’s function does not localize in real space.

→   leading to long-range correlation. 

Beyond the circle, the off-diagonal elements of Green’s function behave as 

Metal Insulator

in complex plane

Matsubara poles
in complex plane

Matsubara poles

At z=μ, the off-diagonal elements of Green’s function behave as 



Extension of O(N) Krylov subspace methods to DFT

• Based on Lanczos algorithms

• Based on a two-sided block Lanczos algorithm

• Based on an Arnoldi type algorithm 

R. Haydock, V. Heine, and M. J. Kelly, J. Phys. C 5, 2845 (1972); R. 

Haydock, Solid State Phys. 35, 216 (1980). 

T. Ozaki, Phys. Rev. B 59, 16061 (1999); T. Ozaki, M. Aoki, and D. G. 

Pettifor, ibid. 61, 7972 (2000).

T. Ozaki and K. Terakura, Phys. Rev. B 64, 195126 (2001). 

T. Ozaki, Phys. Rev. B 64, 195110 (2001).

T. Ozaki, Phys. Rev. B 74, 245101 (2006). Hc cS  

How can we take 

account of the 

overlap matrix S ?



TO, PRB 74, 245101 (2006)

O(N) Krylov subspace method

Two step mapping of the whole Hilbert space into subspaces



Development of Krylov subspace vectors

|K0> |K1> |K5>

The Krylov vector is generated by a multiplication of H by |K>, 

and the development of the Krylov subspace vectors can be 

understood as hopping process of electron. 

The information on environment can be included from near sites 

step by step, resulting in reduction of the dimension.



Generation of Krylov subspaces

The ingredients of generation of Krylov subspaces is 

to multiply |Wn) by S-1H. The other things are made only 

for stabilization of the calculation.

Furthermore, in order to assure the S-orthonormality of the 

Krylov subspace vectors, an orthogonal transformation is 

performed by 

For numerical stability, it is crucial to generate 

the Krylov subspace at the first SCF step.



Embedded cluster problem

Taking the Krylov subspace representation, the cluster eigenvalue

problem is transformed to a standard eigenvalue problem as:

where HK consists of the short and long range contributions.

updated fixed

Green:   core region

Yellow: buffer region

• The embedded cluster is under the Coulomb interaction from the other parts.

• The charge flow from one embedded cluster to the others is allowed.



Relation between the Krylov subspace 

and Green’s funtion

A Krylov subspace is defined by

A set of q-th Krylov vectors contains up to information of (2q+1)th moments.

Definition of moments

The moment representation of G(Z) gives us the relation. 

One-to-one correspondence between the dimension of Krylov subspace 

and the order of moments can be found from above consideration.



Convergence property

The accuracy and efficiency can be controlled by the size of 

truncated cluster and dimension of Krylov subspace.

In general, the convergence property is more complicated.

See PRB 74, 245101 (2006).



Comparison of computational time

Carbon diamond

The computational time of calculation for each cluster does not depend

on the system size. Thus, the computational time is O(N) in principle. 



Parallelization

How one can partition atoms to minimize 

communication and memory usage?

Requirement: 

• Locality

• Same computational 

cost

• Applicable to any 

systems

• Small computational 

overhead

T.V.T. Duy and T. Ozaki, CPC 185, 777 (2014).

Recursive atomic 

partitioning



Modified recursive bisection

If the number of MPI processes is 19, then the following binary 

tree structure is constructed. 

In the conventional recursive bisection, the bisection is made so that 

a same number can be assigned to each region. However, the 

modified version bisects with weights as shown above.



Reordering of atoms by an inertia tensor



Diamond 16384 atoms, 19 processes

Allocation of atoms to processes

Multiply connected CNT, 16 processes



Parallel efficiency on K

The parallel efficiency is 68 % using 131,072 cores.

Diamond structure consisting 

of 131,072 atoms



Applications of the O(N) method

1. Interface structure between BCC Iron and carbides

2. Desolvation of Li+

3. Electronic transport of graphene nanoribbon

M. Ohfuchi et al.,  Appl. Phys. Express 7, 025101 (2014).

H Jippo, T Ozaki, S Okada, M Ohfuchi, J. Appl. Phys. 120, 154301 (2016).

T. Ohwaki et al., J. Chem. Phys. 136, 134101 (2012).

T. Ohwaki et al., J. Chem. Phys. 140, 244105 (2014). 

T. Ohwaki et al., Phys. Chem. Chem. Phys. 20, 11586 (2018).

H. Sawada et al., Modelling Simul. Mater. Sci. Eng. 21, 045012 (2013).

H. Sawada et al., Metals 7, 277 (2017).



Precipitation in bcc-Fe

Precipitating materials:

TiC, VC, NbC

In collaboration wit Dr. Sawada (Nippon Steel)

Pure iron is too soft as structural 

material. Precipitation of carbide 

can be used to control the 

hardness of iron.  
HRTEM image
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Y. Kobayashi, J. Takahashi and K. 

Kawakami, Scripta Mater. 67, 854 (2012).

Diameter of precipitates R (nm)



Coherent

precipitation

Semicoherent

precipitation

Incoherent

precipitation

Precipitation in bcc-Fe

Precipitating materials:

TiC, VC, NbC

In collaboration wit Dr. Sawada (Nippon Steel)

HRTEM image

Pure iron is too soft as structural 

material. Precipitation of carbide 

can be used to control the 

hardness of iron.  
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Strain field

In
te

rf
ac

e 
en

er
g

y
 p

er
 a

re
a

Diameter of precipitate

coherent interface

semi-coherent interface

Interface and strain energies

Semi-coherent 

case

coherent 

case

Iron



Optimized semi-coherent interface structure

H. Sawada et al., Modelling Simul. Mater. 
Sci. Eng. 21, 045012 (2013).
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Precipitation Mother phaseFe atoms：432,000

Precipitation Mother phase

Model potential method： Finnis-Sinclair

Coherent： 10% expansion

Semi-coherent：0% expansion

4% expansion

（Due to dislocation）

Estimation of strain energy

8.94Å



Transition of coherent/semi-coherent interface structure

Calc.     2.3 nm

Expt. 2～3 nm

Kobayashi et al., Scripta Materialia 67, 854 (2012).

estimated by TEM images and structural properties. 

for TiC/Fe 



Outlook

The locality of density matrix and basis function is a key 

to develop a wide variety of efficient electronic structure 

methods. In the lecture we have focused theories of O(N) 

methods, its practical implementations, and discussed 

applications. By making full use of the locality, in 

addition to the development of O(N) methods, it may be 

possible to develop the following methods: 

• Low-order scaling exact method

• O(N) exact exchange method

Plenty of developments of new efficient methods might be still 

possible. 


