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What i1s FPMD ?

In usual molecular dynamics
simulations, the total energy Is
expressed by classical model
potentials. On the other hand,
In the FPMD the total energy
and forces on atoms are
evaluated based on guantum
mechanics.

It enables us to treat bond formation
and breaking.

Simulation of chemical reactions

Elecronic states:
guantum mechanics
DFT

W

Forces on atoms
Hellmann — Feynman force

o

Motion of ion:
classical mechanics
Molecular dynamics methods



Hellmann-Feynman theorem
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The derivative of energy consists of only the derivative of potential.
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In general, Pulay’s correction is needed due to the incompleteness of basis functions
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3R = Hellmann-Feynman force + Pulay’s correction
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Time evolution of Newton eq. by the Verlet method

Taylor expansion of the coordinate R at time t
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Temperature control by the Nose-Hoover method

Micro-canonical ensemble
Heat bath T,

Let the part of system be a canonical ensemble.
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Finite temperature molecular dynamics
simulation of carbon-nanotubes

Observation of buckling of CNT by AFM and STM
M.R.Falvo et al., Nature 389, 582 (1997)
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Finite temperature molecular dynamics
simulation of carbon-nanotubes




Deformation of CNT under finite temperature

Energy curve and stress at

15 % compression
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FIG. 1. Buckling of (10, 10) nanotubes, which include 2280
carbon atoms, under axial compression at (a) 0 and (b) 300 K
obtained by O(N) TBMD simulations. These snapshots are at
80% of the initial length (140 A).

TO, Y. lwasa, and T. Mitani, PRL 84, 1712 (2000).



Car-Parrinello (CP) method for FPMD

By introducing a fictitious mass for wave functions and fictitious kinetic
energy of wave functions, the following Lagrangian can be defined:

L=y [ [5iPde + 5 MR? = E[{es}, R} + A, ([ vy — o)
i n ij

A‘ : constant

Path by the CP method

E[W’.i ’ tRn}]

R. Car and M. Parrinello,
PRL 55, 2471 (1985).

E[IR,!]1: BO surface

The dynamics by the CP method proceeds while vibrating near the Born-Oppenheimer
surface, while the conventional dynamics corresponds to dashed line.



Meta-dynamics for accelerating rare events

A+B— C+D

Reactant A+B

Product C+D

Although the CP-MD method is quite efficient, actual

reactions will require a long time simulation.
A. Laio and M. Parrinello,

PNAS 99, 12562 (2002).



Meta-dynamics for accelerating rare events

A+B— C+D

Reactant A+B

Product C+D

After exploring certain phase space, a penalty is given by adding gaussian
functions to there to avoid exploring the same phase space again. This
treatment can significantly accelerate exploring of phase space.



Nobel Prizes

The Nobel Prize in Chemistry 1998

The Nobel Prize in Chemistry 1998 was
divided equally between Walter Kohn''for
his development of the density-functional
theory' and John A. Pople'for his
development of computational methods in
guantum chemistry"'.

Walter Kohn John A. Pople

The Nobel Prize in Chemistry 2013

The Nobel Prize in Chemistry
2013 was awarded jointly to
Martin Karplus, Michael Levitt
and Arieh Warshel "'for the
development of multiscale models
for complex chemical systems"’.

Arieh Warshel



QM/MM method

quantum physics

The i1dea developed by
the laureates of the
Nobel prize in 2013.

classical
physics

dielectric
medium



An application of CPMD

A First Principles Molecular Dynamics insight
to ATPase (ATP Synthase)

* Prof. M. Boero (Univ. of Strasbourg)
 Dr. T. Ikeda (Genken),

* Prof. E. Itoh(Tokushima Bunri Univ.),
e Prof. K. Terakura (NIMS)

JACS 128 (51), 16798 (2006).



Finding reaction coordinates:
Nudged Elastic Band (NEB) method

The total energy of a system is a function
In a hyperspace of (3N-3) dimensions.
The reaction coordinate is defined by a
minimum energy pathway connecting
two local minima in the hyperspace. The
nudged elastic band (NEB) method is

a very efficient tool to find the minimum
energy pathway.

(A) H. Jonsson, G. Mills, and K. W. Jacobsen, in Classical and Quantum Dynamics in
Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker
(World Scientific, Singapore, 1998), p. 385.

(B) G. Henkelman and H. Jonsson, JCP 113, 9978 (2000).

In later slides, they are referred as Refs. (A) and (B).



Nudged Elastic Band (NEB) method

The NEB method provides a way to find a minimum energy pathway (MEP)

connecting two local minima by introducing images interacting each other
located on a trial pathway.
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Taken from Ref. (A). A8

Taken from Ref. (B).



Plain Elastic Band (PEB) method

A simple idea to find a MEP is to introduce an interaction between

neighboring images by a spring. The optimization of the object function S
tries to shorten the length of MEP.

P
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S(Ri.Rs. -+ Rp_q) = E E(R;) + E T(Ri — Rg-_l)2
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The idea is called a plain elastic band
(PEB) method. However, the PEB
method tends to cause a drift of energy
pathway as shown in the left figure.

. One should consider another way to
Taken from Ref. (A). avoid the drift of the energy pathway.



To calculate the
force, only two

account among F, =
four contributions.

Nudged Elastic Band (NEB) method

The force can be divided to two contributions:
Parallel force

Perpendicular force
P P
Pk o
S(Ry.Ro, - - +Z i-1)’

causing non-equidistance / \ \

distribution of images along
the energy pathway.

JE(Ry)
IR, i

aEspring aEsprillg
IR R, 1

causing the drift of energy pathway
upward along the perpendicular
direction.

The treatment allows
terms are taken into i ) us to avoid the drift of
B OE(Ry) B O FE¢pring energy pathway, while
IR, N IR ' the physical meaning
of the object function is
not clear anymore.



Maximum Force (hatree/bohr)
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Maximum Force (hatree/bohr)
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Stress tensor

a’3=(a’31,a 35,2 33)

a3=(a31,83,,833)

a’,=(a’,,a’5,,a
Strain tensor € scales the
Cartesian coordinate as

r'=(l+¢)r

a,=(251,87,83)

O a’1=(a’11,8’12,8"13)
%, o a,=(a11,812,813)
can be related the energy derivative

OE
w.r.t. cell vectors o by

Then, the stress tensor

where
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Stress tensor in OpenMX

In OpenMX, the total energy is defined by

(NL)
Et E. +FE +Eec +ESee +EXC +ESCC

ot ~ “—“kin na

Thus, at least there are six contributions to stress tensor.

aEtot — aEkin | aEna _l_@Eé(i\lL) +8E8ee _I_aEXC | aE
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« The terms are decomposed to derivatives of matrix elements and overlap stress,
leading to rather straightforward analytic calculations.

« The term is analytically evaluated in reciprocal space.
Is analytically evaluated in real space with a carefully derived formula.

The computational time is almost the same as that for the force calculation.



Stress tensor for E,;,, E,., and E_.

na’

The derivative of E,;, is given by
(Rq)
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The latter derivatives can be transformed to the derivatives w.r.t. Cartesian coordinates:
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The former derivatives can be transformed to the overlap stress tensor:
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The energy terms, E,, and E_., can also be evaluated in a similar way.



Stress tensor for E

oee
The derivative of E;.. is given by
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Stress tensor for E,

The derivative of E,_ is given by
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The second term contributes the overlap stress tensor, and third term can
be evaluated as
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Variable cell optimization

Initial Hessian: Schlegel’s method
Preconditioning: RMM-DIIS

Hessian update: BFGS

Update of positions: Rational function (RF)

RF method
3N a2
¢ = 3 (5), 3 (5 ) - - p e

It Is very important to construct the initial Hessian including
Internal coordinates, cell vectors, and the cross term for fast and

stable convergence.

Int  |Int—Cell
Cell—Int|  Cell

H = BF =




Approximate Hessian by Schlegel

Schlegel proposed a way of constructing an A
approximate Hessian. A force constant for every pair F —

of elements is fitted to the following formula, where (r _ B)3
dataset were constructed by B3LYP calculations.

H.B. Schlegel, Theoret. Chim. Acta (Berl.) 66, 333
(1984); J.M. Wittbrodt and H.B. Schlegel, J. Mol. Struc.

(Theochem) 398-399, 55 (1997).
Parameter B for Badger's rule computed at the B3LYP level of theory

Period 1H 2 Li-F 3 Na-Cl 4 K-Br 5 Rb-1 6 Cs-At
1 - (L2573 0.3401 0.6937 0.7126 (18335 0.9491]
2 0.9652 1.2843 1.4725 1.6549 1.7190
3 1.6925 1.8238 2.1164 2.3185
4 2.0203 2.2137 2.5206
5 2.3718 25110

Suppose the total energy is given by the sum of pairwise potentials. Then, the derivatives
lead to the following relation:

v,= 1y XX f+r-nd| H = BF

where B is the B-matrix of Wilson, H is the approximate Hessian in Cartesian coordinate.



Number of optimization steps to achieve 3x10™* hartree/bohr

160

120¢

80F

40t

0

Benchmark of the approximate Hessian
In OpenMX

For both molecules and bulks, it 1s found that the Schlegel’s
method improves the convergence substantially.

(@)

Il iden
B Schlegel

1 1

Molecules

Methane Glycine Ceo

S|a||c Water

acid

dimer

N|tro

| 20

30

| 25}

1 15F

I

10f

b |
Bulks |
[ g(fk?legel h
Si,C

Diamond B,Cg  TiO, V.05 NaCl
surface



Mumber of Systems
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Benchmark calculations of RFC5

performed by Mr. Miyata, Ph.D student in JAIST, as computational
screening in searching good thermoelectric materials
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The optimization criterion: 104 Hartree/bohr

The histogram shows the number of systems among
785 systems as a function of the number of iterations
to achieve the convergence

For 785 crystals (mostly sulfides) , the full optimization by RFC5 were
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Optimization of the enthalpy

Under an external pressure p, the

structural optimization can be performed _

by minimizing the enthalpy defined with H - E _I_ pV
The stress tensor is easily calculated by
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Outlook

We have discussed the following topics related to dynamical
behaviors and stability of materials.

» Molecular dynamics
 Car-Parrinello MD

» Meta-dynamics

« QM/MM

* Nudged Elastic Band (NEB)
o Stress tensor

 Variable cell optimization

Dynamical behaviors such as chemical reactions and diffusion
processes can be addressed by first-principles molecular
dynamics and the NEB methods. Variable cell optimization
with stress tensor enables us to investigate stability of materials,
and to explore novel crystal structures.



