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Å Software package for density functional calculations of molecules and bulks

Å Norm-conserving pseudopotentials (PPs)

Å Variationally optimized numerical atomic basis functions

Å SCF calc. by LDA, GGA, DFT+U

Å Total energy and forces on atoms

Å Band dispersion and density of states

Å Geometry optimization by BFGS, RF, EF

Å Charge analysis by Mullken, Voronoi, ESP

Å Molecular dynamics with NEV and NVT ensembles

Å Charge doping 

Å Fermi surface

Å Analysis of charge, spin, potentials by cube files

Å Database of optimized PPs and basis funcitons

Å O(N) and low-order scaling diagonalization

Å Non-collinear DFT for non-collinear magnetism

Å Spin-orbit coupling included self-consistently

Å Electronic transport by non-equilibrium Green function

Å Electronic polarization by the Berry phase formalism

Å Maximally localized Wannierfunctions

Å Effective screening medium method for biased system

Å Reaction path search by the NEB method

Å Band unfoldingmethod

Å STM image by the Tersoff-Hamannmethod

Å etc.

OpenMX Opensource package for Material eXplorer

Basic functionalities Extensions



2000 Start of development

2003 Public release (GNU-GPL)

2003 Collaboration:

AIST, NIMS, SNU

KAIST, JAIST, 

Kanazawa Univ.

CAS, UAM 

NISSAN, Fujitsu Labs.
etc.

2018 18 public releases
Latest version: 3.8

http://www.openmx-square.org

History of OpenMX

About 500 papers published using OpenMX
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First characterization of siliceneon ZrB2 in collaboration with experimental groups

B.J. Kim et al., Phys. Rev. Lett. 101, 076402 (2008).

First identification of Jeff=1/2 Mott state of Ir oxides

A. Fleurence et al., Phys. Rev. Lett. 108, 245501 (2012).

K. Nishio et al., Phys. Rev. Lett. 340, 155502 (2013).

Universality of medium range ordered structure in amorphous metal oxides

C.-H. Kim et al., Phys. Rev. Lett. 108, 106401 (2012).

H. Wenget al., Phy. Rev. X 4, 011002 (2014).

Theoretical proposal of topological insulators

H. Jippo et al., Appl. Phys. Express 7, 025101 (2014).

M. Ohfuchi et al., Appl. Phys. Express 4, 095101 (2011).

Electronic transport of graphenenanoribbon on surface oxidized Si

H. Sawadaet al., Modelling Simul. Mater. Sci. Eng. 21, 045012 (2013).

Interface structures of carbide precipitate in bcc-Fe

T. Ohwakiet al., J. Chem. Phys. 136, 134101 (2012).

T. Ohwakiet al.,J. Chem. Phys. 140, 244105 (2014).

First -principles molecular dynamics simulations for Li ion battery

About 500 published papers

Z. Torbatian et al., Appl. Phys. Lett. 104, 242403 (2014).

I. Kitagawa et al., Phys. Rev. B 81, 214408 (2010).

Magnetic anisotropy energy of magnets

Silicene, graphene

Carbon nanotubes

Transition metal oxides

Topological insulators

Intermetallic compounds

Molecular magnets

Rare earth magnets

Lithium ion related materials

Structural materials

etc.

Materials treated so far

Materials studied by OpenMX



Implementation of OpenMX

ÅDensity functional theory

ÅMathematical structure of KS eq.

ÅLCPAO method

ÅTotal energy 

ÅPseudopotentials

ÅBasis functions



Density functional theory

W.Kohn(1923-2016)

The energy of non-degenerate ground state can be expressed by 

a functional of electron density. (Hohenbergand Kohn, 1964)

The many body problem of the ground state can be reduced 

to an one-particle problem with an effective potential. 

(Kohn-Sham, 1965)

[] [] [] [](0)

ext xcE T J v d Er r r r r= + + +ñ r

KS
Ĕ

i i iH f ef=

2

KS eff

1Ĕ
2

H v=- Ð +

eff ext Hartree( ) ( ) ( )
( )

xcE
v v v

d

dr
= + +r r r

r



3D coupled non-linear differential equations have to be 

solved self-consistently.

Mathematical structure of KS eq.

Input charge = Output charge ŸSelf-consistent condition

OpenMX: LCPAO

OpenMX: PW-FFT
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Flowchart of calculation

The DFT calculations basically consist 

of two loops. The inner loop is for SCF, 

and the outer loop is for geometry 

optimization. 

The inner loop may have routines for 

construction of the KS matrix, 

eigenvalue problem, solution of 

Poisson eq., and charge mixing. 

After getting a convergent structure, 

several physical quantities will be 

calculated.



Treatment of core 

electrons

All electron (AE) method

Pseudo-potential (PP) method 

Basis functions Plane wave basis (PW)

Mixed basis (MB)

Local basis (LB)

PP+PW: Plane wave with PP

AE+MB: LAPW, LMTO 

AE+LB: Gaussian

PP+LB: OpenMX, SIESTA

Accuracy Efficiency

Classification of the KS solvers



One-particle KS orbital

is expressed by a linear combination of atomic like orbitals in the method.

Features:

Å It is easy to interpret physical and chemical meanings, since the KS 

orbitals are expressed by the atomic like basis functions.

Å It gives rapid convergent results with respect to basis functions due to 

physical origin. (however, it is not a complete basis set, leading to 

difficulty in getting full convergence.)

Å The memory and computational effort for calculation of matrix elements 

are O(N).

Å It well matches the idea of linear scaling methods.

LCPAO method
(Linear-Combination of Pseudo Atomic Orbital Method)
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üBasis functions



Implementation: Total energy (1)

The total energy is given by the sum of six terms, and a proper integration 

scheme for each term is applied to accurately evaluate the total energy.

Kinetic energy

Coulomb energy with external potential

Hartreeenergy

Exchange-correlation 

energy

Core-core Coulomb energy

TO and H. Kino, PRB 72, 045121 (2005).



The reorganization of Coulomb energies gives three new energy terms. 

The neutral atom energy

Difference charge Hartree energy 

Screened core-core repulsion energy

Neutral atom potentialDifference charge

Implementation: Total energy (2)

Short range and separable to two-

center integrals

Long range but minor contribution

Short range and two-center 

integrals

s



So, the total energy is given by

}

}

Each term is evaluated by using a different numerical grid 

with consideration on accuracy and efficiency.

Spherical coordinate in momentumspace

Realspace regular mesh

Real space fine mesh

Implementation: Total energy (3)



Two center integrals

Fourier-transformation of basis functions

e.g., overlap integral

Integrals for angular parts are analytically 

performed. Thus, we only have to 

perform one-dimensional integrals along 

the radial direction.



Cutoff energy for regular mesh

The two energy components Eŭee+ Exc are calculated on real space 

regular mesh. The mesh fineness is determined by plane-wave cutoff 

energies.

The cutoff energy can be related to the mesh

fineness by the following eqs.



Forces on atoms

Easy calc.

See the left

Forces are always analyticat any grid 

fineness and at zero temperature, even if 

numerical basis functions and numerical grids.
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Norm-conserving pseudopotentialby MBK
I. Morrion, D.M. Bylander, and L. Kleinman, PRB 47, 6728 (1993).

If Qij = 0, the non-local terms can be transformed to a diagonal form.

The form is equivalent to that 

obtained from the Blochl expansion 

for TM norm-conserving 

pseudopotentials. Thus, common 

routines can be utilized for the MBK 

and TM pseudopotentials, resulting 

in easiness of the code development. 

To satisfy Qij=0 ,  pseudofunctionsare now given by 

The coefficients {c} are determined by agreement of derivatives  and Qij=0. 

Once a set of {c} is determined, ɢ is given by 



Optimization of pseudopotentials

1. Choice of valence electrons (semi-core included?)

2. Adjustment of cutoff radii by monitoring shape of 

pseudopotentials

3. Adustmentof the local potential

4. Generation of PCC charge

(i) Choice of parameters

(ii) Comparison of logarithm derivatives

If the logarithmic derivatives 

for PP agree well with those 

of the all electron potential, 

go to the step (iii), or return 

to the step (i). 

(iii) Validation of quality of PP by performing 

a series of benchmark calculations.
good

No good

No good

good

Good PP

Optimization of PP 

typically takes a half 

week per a week. 
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Primitive basis functions

1. Solve an atomic Kohn-Sham eq.

under a confinement potential:

2. Construct the norm-conserving

pseudopotentials.

3. Solve ground and excited states for the 

the peudopotential for each L-channel.

s-orbital of oxygen

In most cases, the accuracy and efficiency can be controlled by

Cutoff radius

Number of orbitals PRB 67, 155108 (2003)

PRB 69, 195113 (2004)



Convergence with respect to basis functions

molecule bulk

The two parameters can be regarded as variational parameters.



Benchmark of primitive basis functions

Ground state calculations of dimer using primitive basis functions

All the successes and failures by the LDA are reproduced

by the modest size of basis functions (DNPin most cases)



Variational optimization of basis functions

One-particle wave functions Contracted orbitals

The variation of E with respect to c with fixed a gives

Regarding c as dependent variables on a and assuming KS

eq. is solved self-consistently with respect to c, we have 

Ozaki, PRB 67, 155108 (2003)

Ÿ



Comparison between primitive and optimized basis functions

Ozaki, PRB 67, 155108 (2003).



Optimization of basis functions

1. Choose typical chemical environments

2. Optimize variationallythe radial functions

3. Rotate a set of optimized orbitals within the subspace, and 

discard the redundant funtions

úú



Database of optimized VPS and PAO

Public release of optimized and well tested VPS and PAO so 

that users can easily start their calculations. 



Science351, aad3000 (2016)

Reproducibility in DFT calcs

15codes

69 researchers

71 elemental bulks

GGA-PBE

Scalar relativistic



PBE lattice constant of Si

Å Basis functions

Å Pseudopotentials

Å Integrals in r and r

Errors


