Calculating model parameters: The case of Heisenberg J_{ex}

Myung Joon Han (KAIST-Physics, mj.han@kaist.ac.kr)

First-principles Approach to SCES

- Strongly correlated electron materials & many outstanding problems (e.g., high-temperature superconductivity)
- 'Solving' those problem often means more than just to describe the 'correct' electronic structure.
- Many different experimental and theoretical methods & techniques (traditionally this has not been a main field of research for firstprinciples calculations.)

Having/providing the unique facets

First-principles Approach (1)

Calculating the correct/realistic electronic structure

- Conventional approximations (e.g., LDA and GGA) are known to fail for the case of correlated electron systems.
- LDA+U, +DMFT (dynamical mean-field theory), GW, etc.

First-principles Approach (2)

Doping

Direct estimation of key quantity or parameter

ARMIN COMANAC¹, LUCA DE' MEDICI², MASSIMO CAPONE^{3,4} AND A. J. MILLIS^{1*}

First-principles Approach (2) – cont'd

Figure from L. Vaugier's thesis

From Dyson's equation for W in RPA, $W = v + v\chi_0 W$

fully screened
Coulomb, W
$$W = [1 - v\chi_0]^{-1}v = [1 - v\chi_0^r - v\chi_0^t]^{-1}v$$

$$= [\{1 - (1 - v\chi_0^r)^{-1}v\chi_0^t\}(1 - v\chi_0^r)]^{-1}v$$

$$= [1 - W^r\chi_0^t]^{-1}W^r$$
partially screened Coulomb, W^r

First-principles Approach (2) – cont'd

First-principles Approach (3)

Calculating new concept and/or quantity?!

✓ Effective charge

Boeri et al., PRL (2008)

- ✓ Charge transfer energy
- ✓ Chern number

Heisenberg Exchange Parameter

 $H = -J_{12} S_1 \cdot S_2$

- ✓ The sign and the strength of two-spin interaction represented by a constant J_{12}
- ✓ (With the minus sign in front of it,) the positive and negative J₁₂ corresponds to the parallel (ferro-) and antiparallel (antiferro) spin alignment, respectively.

Determining J

- Not always straightforward to determine it from experiments (sample quality, fitting, ...etc)
- ✓ Model-based theories often just assume Js.
- ✓ Independent method or way to estimate J
- ✓ Extract some more (hopefully unique) information

Calculating J from Total Energies

$$H = -\frac{1}{2} \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j \qquad E = \frac{1}{12} \frac{1}{2} J_{ij} S_i S_j$$

Metastable spin structure (not the ground state) can usually be stabilized (from the self-consistent) by choosing the desired spin orientation as the input.

→ Total energies corresponding to different spin orders can be estimated and compared.

Calculating J as a Response Function

$$J^{\alpha\beta}(\mathbf{R}_{ij}) = \sum_{\mathbf{q}} J^{\alpha,\beta}_{\mathbf{R}_{ij}}(\mathbf{q}) e^{-i\mathbf{R}_{ij}\mathbf{q}}$$

$$J_{\mathbf{R}_{ij}}^{\text{\forall orbitals}}(\mathbf{q}) = \sum_{\alpha,\beta} J_{\mathbf{R}_{ij}}^{\alpha,\beta}(\mathbf{q})$$

$$\delta\theta_1 \qquad \delta\theta_2 \\ I \qquad I \qquad J_{\mathbf{R}_{ij}} \qquad \delta\theta_2 \\ i \qquad j$$

.

Liechtenstein et al. PRL (2009) MJH et al. PRB (2004)

CF: Neutron scattering measurement

Advantage

- ✓ No need to perform the multiple large-supercell calculations
- ✓ Being able to describe the long range behavior
- ✓ More similar with neutron scattering

[1] Kvashnin et al., Phys. Rev. B **91**, 125133 (2015)

Example 1: Fe-pnictides Superconductors

Frustration and quantum criticality?

Si and Abrahams, PRL (2008) Fang et al., PRB (2008) Xu et al., PRB (2008)

TABLE I.	Calculated J	Fe mo	oments	(in	μ_B)	and	in-plane	ex-
change inter	ractions (in n	neV),	using e	xpe	rime	ntar	z(As).	

System	Moment	J_{1a}	J_2	J_{1b}	$J_{1a}/2J_2$	$J_{1a} + 2J_2$
LaFeAsO	1.69	47.4	22.4	-6.9	1.06	92.2
CeFeAsO	1.79	31.6	15.4	2.0	1.03	62.4
PrFeAsO	1.76	57.2	18.2	3.4	1.57	93.6
NdFeAsO	1.49	42.1	15.2	-1.7	1.38	72.5
CaFe ₂ As ₂	1.51	36.6	19.4	-2.8	0.95	75.4
SrFe ₂ As ₂	1.69	42.0	16.0	2.6	1.31	74.0
BaFe ₂ As ₂	1.68	43.0	14.3	-3.1	1.51	71.5
KFe ₂ As ₂	1.58	42.5	15.0	-2.9	1.42	72.5
LiFeAs	1.69	43.4	22.9	-2.5	0.95	89.2

MJH et al., PRL (2009)

Example 2: Superconducting FeTe

Subedi et al., PRB (2008)

Example 2: FeTe – cont'd

	System	Moment	J_{1a}	J_{1b}	J_{2a}	J_{2b}
Double-stripe	Fe _{1.068} Te	2.09 (1.97 ^b)	-7.6	-26.5	46.5	-34.9
	FeTe	2.16	-4.2	12.9	-6.2	-15.3
Single-stripe	FeTe	2.09	38.6	21.7	5.0	• • •
	LaFeAsO ^a	$1.69 (0.36^{\circ})$	47.4	-6.9	22.4	•••

Han and Savrasov PRL (2009) Han and Savrasov PRL (2010)

Further Extension

Additional resolution

<u>Iron</u> ferromagnet Tc ~ 1000K

Calculation by Hongki Yoon

J (meV)	D _{xy}	d_{yz}	d_{xz}	$d_{x y}^{2 2}$	d_z^2
d_{xy}	-0.5	-0.5	-0.5	0.0	1.7
d_{vz}		-0.5	-0.5	1.2	0.4
d _{xz}			-0.5	1.2	0.4
$d_{x v}^{2 2}$				2.7	0.0
d_z^2					2.7

Kvashnin et al., PRL (2016)

 Spin-orbit coupling and other coupling parameters