Electronic tranport calculation methods
In OpenMX

A Electronic transport in nargcale materials:
A Experiments
A Nonequilibrium Green function method

U From a scattering problem

A Applications

Taisuke Ozaki (ISSP, Univ. of Tokyo)
Nov. 239, OpenMX handsn workshop in KAIST



Quantum conductance In gold nanowires

After contacting two gold structures, gradually the two strucutres are pulled
along the axial direction. Then, the bridging region becomes gradually thinne
Along with the structural change, the conductance changes stepwise.
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(LaMnO ,),/(SrMnO ;) superlattice

Depending on the number of layers, the system exhibits a-metal
insulator transiton. N<3 metal, 3 n insulator
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Transport In a single strand DNA molecule

Adsorption Detachment
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The current jumps when the molecule adsorbs and

detaches.
Harm van ZalingeChem. Phys. Chem. 7, 94 (2005



Application of tunneling magnet resistance (TMR) effect

A device used for a hard disk head is based on a tunneling magnet
resistance (TMR) effect, in which the tunneling current strongly
depends on the relative spin direction of two ferromagnetic regions.




Application of tunneling magnet resistance (TMR) effect

A device used for a hard disk head is based on a tunneling magnet
resistance (TMR) effect, in which the tunneling current strongly
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Nonequilibrium Green funtion methods

1961 Schwinger
Perturbation theory foib t o t

1
V)

1965 Keldysh
Keldysh Green function method

1972 Caroli et al.,
Application of the Keldysh Green function
method

2002 Brandbyge et al.,
Development of Transiesta (ATK)



Potential advantages of the NEGF method

1.

2.

The source and drain contacts are treated based on the san
theoretical framework as for the scattering region.

The electronic structure of the scattering region under a finit
sourcedrain bias voltage is setfonsistently determined by
combining with first principle electronic structure calculation
methods such as the density functional theory (DFT) and the
HartreeFock (HF) method.

Many body effects in the transport properties, e.g., electron
phonon

Its applicability to largescale systems can be anticipated,
since the NEGF method relies practically on the locality of
basis functions in real space, resulting in computations for
sparse matrices.



Derivation of the NEGF method

1. From a scattering problem

Within oneparticle picture, both the methods
give the same framework.



System connected to two reservoirs with
different chemical potential
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1. The left and right reservoirs are infinitely large and
In thermeequilibrium withdifferent chemical potential
2. They are connected via a small central region.
3. The total system may be in a requilibrium steady state
that electrons flow steadily from the left to right.



One-dimensional scattering problem
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The onedimensional

scattering problem for a
potential wall (x=0 to a)
can be solved analytically.
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Generalization of scattering problem in a quasi 1D

Hl T 0 |‘-I’1> |1I’1>
Lead 1 [ Device Lead? o Hy i) Wy |=E| [V,
0 ty H; Wy) W)

(1) Assume that the wave (2) Assume that the whole wave
function of the isolated lead function of the total system can be

IS known. given by
Hy|d1,) = E|d ) 1) [b10) + Ix1) )
o o o) | =|  Ixa)
(3) By putting the whole wave [T2) x2) )
function in the step2 into the W) = (14 gnGarl) [d1)
Schroedinger eq., we obtain the )
following equations: Wq) = Gari |d1,n)

The whole wave function can be

. . W) = gom2Gar]|d1n)
written by 0.



Charge density in the device

The charge density of the device can be calculated by considering the
contribution produced with the incident wave function.

V) = Garl |61.0)
All the contributions are summed up with the Fermi function.
P = [ AB S S(B p)(B = Ea) W) (W)
= [T ABS(F, 1) S 8(F ~ Fa)Garl 610) (1) G
= [ ABS (B, ) Garl (S 8(F - B)lér) (1)) G
= [ AEf(E.m)Cur| -G

Fl = T;rtll’i"l
= [ dEf(E,)Gil\G}

Adding the contributions from each lead yields

Depending on the chemical potential,

2 o0 .
= — ) ; ; TT . . .
P = o gf—x-dEﬁE’”z]Gded the contribution of each lead varies.




Flux of probability density (1)

In the nonequilibrium steady state, assuming that the probability density conserves, anc
evaluate the flux of the probability density using the tohependent Schroedinger equation.
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The time evolution of the integrated probability density is given by
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Each term can be regarded as the contribution from each lead k.
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Flux of probability density (2)

_ 1€
i = — (Ul Wa) — (Wl V) )

where the sign of the flux of the probability densjtis taken so that the direction from the the lead

k to the device can be positive.
Lead 1 FDevice Lead?2

, Fl ux from th
I Fl ux from th

In other words, In the steady state the flyx @f the probability
density from the lead 1 to the device is equal to thgtflom the
device to the lead Note that the sign af is opposite to that of
I, when they are seen as current.



Current (1)

dya n d,cafqbe written by the wave function of the isolated lead

W) = Gl |b1) Uy = goraGar]|d1n)

Then, the current from the leads 1 to 2 is given by
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Current (2)

Considering all the states in the lead 1, we obtain the formula of current fro
the leads 1 to 2 as follows:
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Adding all the contributions from each lead yields the formula:
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Summary: from a scattering problem

The whole wave function is written by the incident wave function:

) =(1 +9’1T10dT1T) O10)
W) = Gyri |b10)

Wy) = goma Gyt |d1.0)

The charge density in the device is given by the sum of the contributions from each
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Considering the flux of the probability density, the current is given by
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Conductance and transmission

Let us start an expression of current 7

=L [aB T(E) [f(E - ) — f(E — )], (1)

where g is the elementary charge, h the Plank constant, T the transmission, [ the
Fermi function, p; and pe the chemical potentials of the left and right leads.
Our purpose is to find a relation:
V

[=—=VG. 2
R , (2)

where V' 1s the source-drain bias voltage, R the resistance, and G = E 1s the conduc-
tance. To derive Eq. (2) based on Eq. (1), we consider a case that p; = s +qV =

i+ qV with a tiny V. Then, Eq. (1) can be approximated by

1 = & [aBT(E) (B~ (u+aV) - f(E-p),
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Conductance and transmission: continued

Since the first term in the R.H.S of Eq. (3) is zero when V — 0, and 2/= gy D, _

o f(E—(u+qV -
— g2l (itg H|‘L-'=(}, we obtain

3E
~ —'L’/dE T(E (_Ejf[E _a{g_qvnhrzu). (4)

In case that V — 0 and the elecronic temperature is zero, the derivative in Eq. (4)
becomes the delta function. Thus, we have

q°
1= V{(T(w). (5)

By comparing Eqs. (2) and (5), the conductance G can be related to the transmission
at the chemical potential:

G =TT (6)
Here we define
(7)
Using G as unit, we can write

G=T(u) in Gy (8)



System we consider

Assume that the periodicity on the bc plane, and non

periodicity along the-axis

Thus, we can write the Bloch wave function
on the bc plane
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T. Ozaki et al., PRB 81, 035116 (2010).
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And, the problem can be cast to a 1D probl
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where the Hamiltonian is given by a block tri
diagonal form:
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Green function of the device region

Using the block form of matrices and the following identity:

GX () (zsM — gy =1
we obtain

where the self energies are explicitly given by
k k k
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((k k
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Assumption in the implementation of the NEGF method
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|equilibrium

It Is assumed that the states foy<m, In the central part
IS In the thermal equilibrium. Then, the charge density can
be calculated by

)
p=——Ilm

) /
[ dEfpG" = ZIm [ dE(fp — fr)G"T LG



Density matrix of the device region

From the previous assumption we made, the density matrix
IS given by the sum of the equilibrium and nonequilibrium
contributions.

;JSHEEJ) _ ﬂfj__lgu + Apo R, -

The equilibrium contribution is given by the integration of
the equilibrium Green function.

Pok = 3 " AEGYL(E £ i0M) F(E - p).
s

—



Contour integration

. 1 )
1+ exp(z) 2 4 z )2
() - (z()m)z
By expressing the Fermi function 3+ ‘-*fmz
one can obtain a special distribution 5+ :
of poles. The distribution gives @M~ D7
the extremely fast convergence.
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T.0zaki, PRB 75, 035123 (2007). Index of Poles



Nonequlibrium density matrix

Since NEGF is a neanalytic function, the integration is
performed on the real axis with a small imaginary part.
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Poisson eq. with the boundary condition

Poisson eq.
( d? d? d?

dr? i dy? " d::?) Via(z,y, 2) = —Amp(z, y, 2)

FT for x-y plane
d? i
( “’) V(G ), z) = —4mp(G, 2)

dz?
Discretization

Vit(G) 2nrn) — 2Va (G 20) V(G 20 )

— (G, 2V Gy, z,) = —4mp(Gy. z,
A7) p(G, 2)Vu(G). z,) Tp(G, 2,)

Boundary conditions:  Vi(Gy,2)  Va(G). 2n)

XY-FFT Y | i ne ar XYimverse ¥FT
Cost: O(NJog(N,)) O(N,log(N,)) O(N,)



Fe|MgO|Fe (TMR device)

Fe|MgO|Fe device has been gradually used as a hard disk head.
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k-dependency of transmission (Fe|MgO|Fe)
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LaMnO ,/SrMnO ,

TABLE [I: Total energy (meV) per formula unit,
LaMnOs3/SrtMnOs, and conductance G (Q 'um™2) of
the (LaMnOs3)/(SrMnOs3) supperlattice with four different
magnetic configurations, i.e., ferromagnetic (F), A-type (A),
G-type (G), and C-type (C) antiferromagnetic configurations
of Mn sites. The total energy is measured relative to that of
the ferromagnetic configuration. G, 1s the in-plane con-
ductance for the up spin state, and the others are construed

in the similar way. For the conductance calculations k-points
of 60 x 60 were used.

F A C G
Energy 0 5.0 163.8 248.2
G1,in 2262 1433 1169 1646
Glin 1.82x 1072 1425 1105 1646
G1yout 1741 664 1127 678
Glow 6.43x 1077 655 1128 677




Dual spin filter effect of the magnetic junction
Rectification ratio at 0.4V: 44.3

Up spin in AFM

PRB 81, 075422 (2010).

-1.2 -0.8 -0.4 0 0.4 0.8 1.2

up spin  : flowing from right to left
down spin: flowing from left to right
Y Dual spin filter effect

The same result is obtained foeZ&NR and 1eZGNR.



Conductance (transmission) of Z GNR
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For the upspin
channel, the
conduction gap
disappears aD.4
V, while the gap
keep increasing
for the down spin
channel.



Band structures with offset of 8ZGNR

Blue shade  Conductance gap
for the up spin

Purple shade Conductance gap
for the down spin

. oV
The energy regime where
the conductance gap
appears does correspond
to the energy region
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