
Application of interface to 
Wannier90

: anomalous Nernst effect

Fumiyuki Ishii
Kanazawa Univ.

Collaborator:
Y. P. Mizuta, H. Sawahata, 

스키루미온



Outline

1. Interface	to	Wannier90
2. Anomalous	Nernst	effect



Wannier90 http://www.wannier.org



Capabilities	of	Wannier90

• Boltzmann	transport	(Seebeck etc.)
• Quantum	transport
• Anomalous	Hall	effect
• Optical	conductivity
• Orbital	magnetization
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Figure 40: Schematic computational flow for the interface of OpenMX with Wannier90.
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Figure 41: (a) Band structure of silicon in the diamond structure, calculated by 8 Wannier orbitals

constructed from OpenMX and Wannier90 calculations, and (b) Seebeck coe�cient at T=300K esti-

mated from the 8 Wannier bands. The input file used for the OpenMX calculation is ’Si-Wannier90.dat’

which is found in the directory ’work’.
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Seebeck coefficient of silicon
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Optical	conductivity	of	SrVO3

Experiment:
Makino	et	al.,	PRB	58	4384(1998)
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and the generalized Drude analysis (ma) appear in Table I. It
is expected that we should observe, near the Mott transition,
a critical enhancement of the effective mass of the 3d con-
duction electrons. If we substitute the Ca21 ion for the Sr21

ion in the Ca12xSrxVO3 system, the 3d bandwidth succes-
sively decreases. Then, the value of m*/m0 is expected to
increase drastically reflecting the change of the U/W ratio.
But we have observed that such a large mass enhancement
does not actually take place in this system. This is consistent
with the result shown in the preceding paper.14

C. Spectral weight redistribution of 3d band

The density of states ~DOS! of orthorhombic CaVO3 and
cubic SrVO3 calculated using the full-potential augmented
plane-wave method with the local-density approximation
~LDA! are shown in the top part of Fig. 9. The band calcu-
lation shows that the DOS near the Fermi level EF is domi-
nated by the V 3d electrons. The V 3d band crosses the
Fermi level, and the DOS below 4 eV is mainly the O 2p
band.
In the metallic states, s~v! is expected to consist of two

basic components: intraband transitions within the V 3d con-
duction band, i.e., the Drude part extending from v50, and
interband transitions appearing at much higher energy. The
latter is regarded from the calculated DOS as the charge-
transfer contribution ~an excitation from the O 2p band to
the unoccupied part of the V 3d band above EF). A corre-

sponding schematic picture of the optical conductivity is
shown in the bottom part of Fig. 9. As seen in the picture, the
charge-transfer contribution is expected to appear above
;4 eV, and the absorption edge of the charge-transfer tran-
sition in SrVO3 is considered to shift slightly to lower energy
than that of CaVO3, reflecting the shift of the O 2p band.
Based on this picture, let us now look at the experimental

results; Fig. 10 shows the real part of the optical conductiv-
ity, s~v!, of the Ca12xSrxVO3 single crystals (x50, 0.25,
0.50, 1!. The optical conductivity spectra are different from
our naive schematic picture ~Fig. 9 bottom!; they show the
presence of two anomalous features in the intraband transi-
tion part below 4 eV besides the Drude-like absorption ~dis-
cussed above!: a small peak that appears at ;1.7 eV and a
large peak at ;3.5 eV. It must be noted that the two peaklike
structures below 4 eV have no naive origin as far as we can
infer from the calculated DOS ~Fig. 9!. This large spectral
weight redistribution is generally believed to be a manifesta-
tion of the strong electron correlation in this system.
Figure 11 shows a comparison of the optical conductivity

spectra of CaVO3 to those of other perovskite oxides,
Sr0.95La0.05TiO3 ~lightly doped 3d0.05 metal!,23 and YTiO3
~3d1 insulator! reported by Okimoto et al.8 In the optical
conductivity of Sr0.95La0.05TiO3, the most prominent low-
energy feature, that distinctly rises around 4 eV, can be in-
terpreted as originating in a transition from the O 2p band to
the Ti 3d band, which corresponds to the optical gap of the
parent insulator SrTiO3.24 The doped 3d electrons contribute
to s~v! with a small spectral weight extending from v50.
On the other hand, YTiO3 is considered to be a Mott-
Hubbard insulator. Two electronic gaplike features are ob-
served around 1 eV and 4 eV. These features have been,
respectively, interpreted as originating in excitations through
the Mott-Hubbard gap, namely, from the lower-Hubbard
band ~LHB! to the upper-Hubbard band ~UHB!, and as ex-
citations through the charge-transfer gap, i.e., from the O 2p
band to the UHB.8,25 Recently, Bouarab, Vega, and Khan
have reported interband optical conductivities obtained by
the energy-bands calculation of the YMO3 (M5Ti-Cu) sys-
tem with a local spin-density approximation.26 Their calcu-
lated results of interband optical conductivity in YTiO3 is

TABLE I. Effective mass m*/m0 deduced from the plasma fre-
quencies vp and the generalized Drude model (ma).

x 0 0.25 0.5 1

m*/m0 ~deduced from vp) 3.9 3.7 3.5 3.3
ma ~generalized Drude analysis! 3.5 3.2 3.1 2.7

FIG. 9. DOS of CaVO3 and SrVO3 obtained by the LDA band
calculation ~top! and a schematic picture of optical conductivity
expected from the calculated DOS ~bottom!.

FIG. 10. Optical conductivity spectra of the Ca12xSrxVO3 single
crystals (x50, 0.25, 0.50, 1! at room temperature obtained by the
Kramers-Kronig transformation of the reflectivity data.
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II. EXPRESSIONS OF THERMOELECTRIC QUANTITIES

The formulae for the thermoelectric cofficients to be evalu-
ated follow from the linear response relation of charge current:
j = σ̃E+α̃(−∇T ), where E and ∇T are the electric field and
temperature gradient present in the sample.

Using the conductivity tensors σ̃ = [σij ] and α̃ = [αij ], we
obtain

⎧
⎪⎪⎨

⎪⎪⎩

S ≡ Sxx ≡ Ex

∂xT
=

S0 + θHN0

1 + θ2H

N ≡ Sxy ≡ Ex

∂yT
=

N0 − θHS0

1 + θ2H
= −Syx.

(1)

Here we defined S0 ≡ αxx/σxx, θH ≡ σxy/σxx, N0 ≡
αxy/σxx for a simpler notation. The specific form of the con-
ductivity tensors σ and α we consider here is,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx = e2τ
∑

n

∫
dk vnx (k)

2

(
− ∂f

∂εnk

)
,

σxy = −e2

h̄

∑

n

∫
dk Ωn

z (k)f(εnk) = −σyx,

αij =
1

e

∫
dεσij(ε)|T=0

ε− µ

T

(
−∂f

∂ε

)

for i = x or y, j = x or y,

(2)

where e = −|e|, εnk, vnx (k) ≡ h̄−1∂εnk/∂kx, f(εnk) and
Ωn

z (k) are the electron charge, the band energy, the electron’s
group velocity, Fermi-Dirac distribution and the z-component
of Berry curvature, respectively, all of which being band-
resolved quantities with index n summed over all bands. We
assumed a constant relaxation time (τk = τ ). See Supplemen-
tal Material II for a review of derivation of Eq.(2).

Throughout this paper, since our 2D system has no period-
icity in z direction, we discuss σij ≡ σ2D

ij ≡ d× σ3D
ij , which

is independent of the film thickness d and has the dimension
of e2/h whose unit can be Ω−1, instead of real conductivity
σ3D
ij . Note that the Seebeck coefficient S0 estimated without

considering Berry curvature is obtained by setting θH = 0 and
N0 = 0 in Eq. (1).

III. MODEL

We consider a magnetic SkX on a two dimensional square
lattice, with its unit cell of lattice constant 2λ = 19.8Å con-
taining 6 × 6 spins, thus the atomic lattice spacing a = 2λ/6
being 3.3Å. The spin configuration is equivalent to the one
studied in Ref.[15], i.e., the spherical coordinates of spin
m(ri) located at site i are set as θi = π(1− ri/λ) for ri < λ
and θi = 0 for ri > λ, along with φi = tan−1(yi/xi) + C,
where C is an arbitrary constant. In order to simulate the sim-
plest case, we assumed each spin to be that of a hydrogen
atom. The spin modulation in the system is shown in Fig.1.

FIG. 1. A view of an unit cell of 6× 6 SkX.

IV. COMPUTATIONAL PROCEDURE

Our calculations consist of three steps: With OpenMX
code19 (1) obtain the electronic Bloch states {|Ψnk⟩ =
eik·r|unk⟩} and correspoinding eigenenergies {εnk} of
the target SkX, and using a functionality20 implemented
in OpenMX, which is based on the formalism proposed
in Ref.[21 and 22] calculate their overlaps {Mk,b

mn ≡
⟨umk|unk+b⟩} between neighboring k-points k and k+b on
a grid, and the projections {Ak

mn ≡ ⟨Ψmk|gn⟩} of a guessed
set of localized orbitals {|gn⟩} onto the Bloch states, and with
Wannier90 code23 (2) construct maximally localized Wan-
nier functions (MLWF)24 as particular linear combinations of
{|gn⟩} at each k point using the three sets of data passed
from step(1): {εm}, {Mk,b

mn } and {Ak
mn}, then finally (3)

compute from the obtained MLWF all the necessary trans-
port quantities in Eq.(2) and Eq.(1) expressed according to the
Boltzmann semiclassical transport theory, where we adopted
constant-relaxation-time approximation with a fixed value of
τ = 0.1ps25.

In step(1), one s-character numerical pseudo-atomic orbital
with cutoff radius of 7 bohr was assigned to each H atom,
as an element of both the basis set for expanding the Bloch
states and the initial guess for MLWF. The present calcula-
tion for a non-collinear magnetic system was realized by ap-
plying a spin-constraining method26 in the non-collinear den-
sity functional theory27. Step(1) yielded 6×6=36 non-spin-
degenerate occupied bands and the equal number of unoccu-
pied ones, among which only the former 36 bands were used
to construct MLWF and interpolated with them to calculate
the conductivities. In step(3), two modules were used in Wan-
nier90: berry module based on the formalism in Ref.[28] to
compute σint

xy and boltzwann module introduced in Ref.[29] to
compute σxx and S0, in both of which the sampling for inte-
grations was performed on 50 × 50 k-points. Besides these,
numerical intergrations were carried out to evaluate αxy from
σxy via Eq.(2).

The above procedure was tested30, referring to Ref.[15].

generated	
E-field

Y. P. Mizuta, & F. I, JPS Conf. Proc. 3, 017035(2014), ibid. 5, 011023 (2015).
Sci. Rep. 6, 2876(2016)
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Mechanism for Large Seebeck Coefficient

Asymmetry in σxx(ε) : D(ε), vx(ε),
is  origin of large S

τ：constant	approximaion
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Mechanism for Large Nernst Coefficient

Asymmetry in σxy(ε) : Ω(ε), D(ε),
is  origin of large N0
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Anomalous	Nernst	Effect	(ANE)	in	
Skyrmion Crystal	
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- s-orbital	SkX model	–
(Hydrogen	Atom	with	OpenMX)
Y. P. Mizuta and F. Ishii, Scientific Reports 6, 28076 (2016)

http://dx.doi.org/10.1038/srep28076
~ 2nm

Chemical potential  (eV) 0.0-1.6

Large ANE

T=300K



Large anomalous Nernst effect in a Skyrmion crystal
Y. P. Mizuta and F. Ishii, Scientific Reports 6, 28076 (2016)

www.nature.com/scientificreports/

3Scientific RepoRts | 6:28076 | DOI: 10.1038/srep28076

a value expected to be realistic28 (We will find, however, later in the discussions that our results are very sensitive 
to the choice of τ). In step(1), two s- and one p-character numerical pseudo-atomic orbitals with cutoff radius of 7 
bohr was assigned to each H atom. The present calculation for a non-collinear magnetic system was realized by 
applying a spin-constraining method29 in the non-collinear density functional theory30. Step(1) yielded 6 ×  6 =  36 
non-spin-degenerate occupied bands and the equal number of unoccupied ones, among which only the former 36 
bands were used in step(2) to construct MLWF and interpolated with them to calculate the conductivities. In 
step(3), two modules were used in Wannier90: berry module based on the formalism proposed by Wang et al.31 to 
compute Σ xy(ε) and boltzwann module introduced by Pizzi et al.32 to compute σxx and S0, in both of which the 
sampling for integrations was performed on 50 ×  50 k-points. Besides these, numerical integrations were carried 
out to evaluate σxy and αxy from Σ xy(ε).

The above procedure was tested in the following manner: For 4 ×  4 SkX, the calculated band structure and 
the Fermi energy dependence of AHC were in overall agreement with the ones previously reported in the 
tight-binding model study15, confirming the reproducibility of the similar situation by different approaches.

In addition, the AHC and the Berry curvature were computed also via another formalism, which is advanta-
geous in the sense that it can identify the Chern number assigned to each band (see Supplemantal Information D),  
and the consistency was confirmed between the results from the two different methods.

Results and Discussions
Electronic structure and conductivities. First we show the obtained band structure of the 36 occupied 
states in Fig. 2(a). We notice there that each band is well isolated from each other, except for the four bands 
around the middle energy range [− 2.0, − 1.9] eV, which we shall hereafter refer to as “central bands”. Although we 
can hardly see gaps among the central bands on the scale of Fig. 2, we confirmed that even them are isolated from 
one another by finite gaps −⪆10 meV2  (see Fig. 2 in Supplemental Information D). Another thing we notice is that 
some neighboring bands, including the central ones, tend to converge toward M point (0.5, 0.5)π/(2λ). Regarding 

Figure 1. A view of an unit cell of 6 × 6 SkX. 

Figure 2. (a) Band structure and Fermi energy dependence of (b) longitudinal and (c) anomalous Hall 
conductivity of 6 ×  6 SkX. The blue dashed line indicates the µ0 mentioned in the main text.





Variation with size n=6, 8, 10, 12 

Larger SkX gives stronger TE voltage
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the final expression: ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx = e2τ ∑
n

∫ dk
(2π)2 [vnk]

2
x

(
−∂ f (εnk)

∂εnk

)
,

σxy =−e2

h̄ ∑
n

∫ dk
(2π)2 [Ωn(k)]z f (εnk) =−σyx,

αi j =
1
e

∫
dεσi j(ε)|T=0

ε −µ
T

(
−∂ f

∂ε

)

for i = x or y, j = x or y,

(5)

where f (ε) is the Fermi-Dirac distribution, and we assumed a constant relaxation time (τnk = τ).
The expressions in Eq.(5), though looking different, are equivalent to the ones presented around Eq.(2) of the main body.

C: Skyrmion size dependence
The maximum value of Nernst coefficient N at T = 300K found in the space of chemical potential µ is plotted as a function
of the skyrmion size n2 (number of sites forming a single skyrmion) in Fig.1. We clearly see a monotonic grow of Nmax that

Figure 1. Variation of the maximum N in the space of µ as the skyrmion size (n2) grows.

we can interpret as a direct consequence of larger maximum values of the anomalous Hall conductivity (AHC) for larger n (in
consistent with the statement by Hamamoto et al.1) , which suddenly drop in almost n-independent energy width (i.e. width
barely changed from the one for n = 6 case seen in Fig.2 of the main body). The behavior of roughly Nmax ∝ n2 is understood
from the contribution of AHC=1(e2/h) from each of many bands as is mentioned in the main body. Although this trend seems
very promising, we need to be careful of the problem of scattering, as disorder of the same extent has more serious effect on
the electron conduction over larger unit cells.

D: Berry curvature and band-resolved Chern number
We have performed first-principles calculation of Berry curvature Ω(k) and Chern number Cn for each band (n-th from the
bottom) also directly from the Bloch wave functions by using discretized formula.4, 5 The former (and the corresponding
band dispersion) and the latter are plotted in Fig.2 and Fig.3, respectively. The results are consistent with those of Wannier90
reported in the main body, evaluated via Wannier functions constructed from the Bloch wave functions. What is particularly
interesting is that the 21th band indicated in red in the upper panel of Fig.2 has an extremely large Chern number of C21 = 27
as shown in Fig.3. The evaluation of Ω(k) on this band (lower panel of Fig.2) shows sharp peaks at every position of avoided
crossing with the adjacent band, which look larger in magnitude for smaller gaps (An enlarged plot of the seemingly smallest
gap where Ω(k) takes the maximum is displayed inside Fig.2). This behavior is a clear manifestation of the character of Kubo-
formula accounting for the Berry curvature as its partial contribution. Most of the bands, i.e. except three (19th-21th), have
Cn = 1, somewhat reminiscent of Landau levels in the quantum Hall effect. The Chern number of each band should manifest
itself as the number of chiral edge states which additionally appear in the gap just above that band (bulk-edge correspondence)
as explicitly exemplified by Hamamoto et al.1 It is of great interest and also a future task to reveal the origin (key factor)
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