Unfolding band structure into a conceptual Brillouin zone

Chi-Cheng Lee Institute for Solid State Physics, The University of Tokyo, Japan

Summer School on First-Principles Calculations in ISSP (ISS2018), July 4, 2018

cclee.physics@gmail.com

What is band structure? What is conceptual Brillouin zone? What is unfolding?

Band structure: Bloch theory and Kohn-Sham Hamiltonian

$$\hat{H}\psi = \left(-\frac{\hbar^2}{2m}\nabla^2 + U(r)\right)\psi = \varepsilon\psi$$

$$U(r+R) = U(r)$$

$$\psi_{nk}(r) = e^{ikr}u_{nk}(r) \text{ with eigenvalue } \varepsilon_{nk}$$

$$E_{F}$$

- The eigenstates of single-particle Hamiltonian can be compared with experiments that measure single-particle properties, for example, the ARPES measurement.
- Note that Kohn-Sham Hamiltonian is a single-particle Hamiltonian although the delivered charge density is many-body charge density.

Band structure: Angle-Resolved Photoelectron Spectroscopy

ARPES experiment can directly measure the kinetic energy of the outgoing electron, and therefore, the momentum (the angle is known). Having the work function *\$\phi\$*, the relationship between binding energies and momenta of the electrons can be plotted as the **band structure**.

First Brillouin zone: Primitive unit cell in reciprocal space

• Once the real-space primitive unit cell is determined, the reciprocal lattice vectors are also determined via

$$\vec{a}^* = 2\Pi \frac{\vec{b} \times \vec{c}}{\vec{a} \cdot \vec{b} \times \vec{c}}, \quad \vec{b}^* = 2\Pi \frac{\vec{c} \times \vec{a}}{\vec{b} \cdot \vec{c} \times \vec{a}}, \quad \vec{c}^* = 2\Pi \frac{\vec{a} \times \vec{b}}{\vec{c} \cdot \vec{a} \times \vec{b}}$$

Once the reciprocal lattice vectors are known, first Brillouin zone can be obtained using perpendicular bisectors.
ISS2018 workshop

Conceptual Brillouin zone: BZ not restricted by geometry

- For the choice of BZ1, the supercell is needed due to the dislocated atom at the center (see the plot in real space). The conceptual BZ is chosen as the the original BZ without considering the dislocation.
- For the choice of BZ2, a smaller unit cell (smaller than the primitive one) is chosen as the conceptual unit cell. The corresponding BZ is called the conceptual Brillouin zone.

Unfolding bands: Redistribute the weight from small to big BZs

• Unfolding band structure can be considered as the calculation of new weight of each "supercell" eigenstate in the conceptual BZ.

Why do we want to unfold bands?

Compare with ARPES experiments: Elaboration 1

Real space				
0	0	0	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	

 \bigcirc

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Reciprocal space
(a)

Assume the Fermi point (constant energy contour) in the BZ of primitive unit cell is measured by ARPES experiments in the first place.

In theoretical calculation, we can perform the calculation for the same *system* using a large supercell. The supercell BZ is much smaller than the one shown in (a). Note that the weight is periodic and is the same by shifting a **G** vector.

(b)

In the case the translational symmetry is broken, we must adopt a supercell for the calculation. We can ask a question: is the measured spectral weight similar to (a) or (b)? The answer is in (c). Reason: Measured intensity cannot experience a drastic change via a tiny perturbation. So we want to represent the weight in the BZ shown in (a).

Chi-Cheng Lee et al., J. Phys.: Condens. Matter 25, 345501 (2013).

Compare with ARPES experiments: Elaboration 2

Periodic-zone representation

periodic-zone scheme allows us to discuss everything in 1st BZ

zone boundary

Experiments final state Hey! I cannot It is here. observe it! (low intensity) E Ef ★ k path **ARPES** experiment prefers the extended-zone

representation

In DFT calculations, there is no difference between the eigenstates inside and outside the BZ as long as they differ by a G vector since we have periodicity. However, ARPES cannot observe all the states.

• Which state can be observed can be analyzed by carefully considering the matrix elements between the relevant initial and finial states.

Compare with ARPES experiments: Momentum distribution

Theoretical interest: Degree of symmetry breaking

(no symmetry breaking)

Theoretical interest: Degree of symmetry breaking

(translational symmetry is broken with respect to the original unit cell)

How to unfold bands? (change basis)

Plane wave: Change basis from $|kn\rangle$ to $|k'n\rangle$

Plane wave: Change basis from $|kn\rangle$ to $|k'n\rangle$

$$\begin{split} \vec{k}n\rangle &= \sum_{M} C^{LCAO}_{\vec{k}n,M} |\vec{k}M\rangle \\ &= \sum_{M} C^{LCAO}_{\vec{k}n,M} \sum_{\vec{G}} |\vec{k} + \vec{G}\rangle \langle \vec{k} + \vec{G} | \vec{k}M \rangle \\ &= \sum_{\vec{G}} (\sum_{M} C^{LCAO}_{\vec{k}n,M} \langle \vec{k} + \vec{G} | \vec{k}M \rangle) |\vec{k} + \vec{G} \rangle \end{split}$$

$$\begin{split} \langle \vec{k} + \vec{G} | \vec{k}M \rangle = & \frac{1}{\sqrt{v}} e^{-i(\vec{k} + \vec{G}) \cdot \vec{r}_M} \times \\ & \int d\vec{r} \langle \vec{r} - \vec{r}_M | M \rangle e^{-i(\vec{k} + \vec{G}) \cdot (\vec{r} - \vec{r}_M)} \end{split}$$

- Spherical harmonics
- Spherical Bessel functions
- More freedom to choose the conceptual unit cell for performing the unfolding and the completeness of plane waves is not essential.
- But need caution because of the **pseudo** wave functions (pseudopotential)

Chi-Cheng Lee et al., arXiv: 1707.02525 (2018), JPCM in press.

Change basis from |KJ> to |kj> in real space

Another way is to change the basis of spectral function in real space.
 By assuming we have an eigenstate |kj> and its corresponding LCAO basis |kn> of the conceptual system, we can insert the identify operator composed of the supercell eigenstates |KJ>.

$$A_{kj,kj} = \sum_{mnK} S_{nm}^{-1}(k) \langle km | KJ \rangle A_{KJ,KJ} \langle KJ | kn \rangle$$

$$100\% \text{ spectral weight at SC } \varepsilon_{KJ}$$

$$A_{kj,kj}(\omega) = \frac{L}{l} \sum_{KG} \delta_{k-G,K} W_{KJ} A_{KJ,KJ}(\omega)$$

Overlap matrix elements for

$$W_{KJ} = \sum_{MNr} e^{ik(r-r'(M))} C_M^{KJ} C_N^{KJ*} S_{0N,rm(M)}$$

The derivation detail can be found in Chi-Cheng Lee *et al.*, J. Phys.: Condens. Matter **25**, 345501 (2013).

Change basis from |KJ> to |kj> in real space

This is the one currently available in OpenMX(v3.8)

$$A_{kj,kj} = \sum_{mnK} S_{nm}^{-1}(k) \langle km | KJ \rangle A_{KJ,KJ} \langle KJ | kn \rangle$$

$$A_{kj,kj}(\omega) = \frac{L}{l} \sum_{KG} \delta_{k-G,K} W_{KJ} A_{KJ,KJ}(\omega)$$

$$W_{KJ} = \sum_{MNr} e^{ik(r - r'(M))} C_M^{KJ} C_N^{KJ*} S_{0N, rm(M)}$$

The essential part is to relabel SC lattice vector by conceptual lattice vector and relabel the SC orbital in terms of the conceptual-cell orbital:
 R → *R* + *r*₀(*M*) and *M* → *m*'(*M*)

Chi-Cheng Lee et al., J. Phys.: Condens. Matter 25, 345501 (2013).

ZrB2 slab

Chi-Cheng Lee et al., J. Phys.: Condens. Matter 25, 345501 (2013).

Example: Missing spectral weight

Silicene: Missing spectral weight

Free-standing planar-like silicene

Energy = 1eV below the Fermi energy (a) Planar-like phase (b)(a) (b) 0 0 0 0 (c) (d) (d)(c)

Iso-energy surface, for example, Fermi surface, could be disconnected!
 Chi-Cheng Lee *et al.*, Phys. Rev. B 90, 075422 (2014).
 ISS2018 workshop

Silicene on ZrB₂: Choice of a good conceptual unit cell

Planar-like silicene

Chi-Cheng Lee et al., Phys. Rev. B 90, 075422 (2014).

Silicene on ZrB₂: Unfolded spectral weight

Chi-Cheng Lee et al., Phys. Rev. B 90, 075422 (2014).

How to run unfolding in OpenMX?

System.CurrrentDirectory

System.Name

Step 1: Choose a system to study

DATA.PATH /provide_your_path/DFT_DATA13 Species.Number 1 <Definition.of.Atomic.Species</pre> Si7.0-s2p2d1 Si PBE13 Si Definition.of.Atomic.Species> Atoms.Number 2 Atoms.SpeciesAndCoordinates.Unit FRAC # Ang | AU <Atoms.SpeciesAndCoordinates</pre> Si 0.33333 0.66666 0.4871 2.2. 1 Si 0.5128 2.2. 2 0.66666 0.33333 Atoms.SpeciesAndCoordinates> Atoms.UnitVectors.Unit Ang <Atoms.UnitVectors 3.8577926 0 0 -1.9288963 3.3409463939 0 0 0 20 Atoms.UnitVectors> scf.XcType GGA-PBE # LDA|LSDA-CA|LSDA-PW|GGA-PBE scf.SpinPolarization Off # 0n|0ff # default=150 (Ry) scf.energycutoff 250.0 scf.maxIter 100 # default=40 scf.EigenvalueSolver band scf.Kgrid 8 8 1 # means n1 x n2 x n3 scf.Mixing.Type rmm-diisk scf.criterion 1.0e-8

./

Silicene

Recursion|Cluster|Band # Simple|Rmm-Diis|Gr-Pulay # default=1.0e-6 (Hartree) ISS2018 workshop

Step 2: Choose k paths for your band structure

We can plot band structure using unfolding keyword

Unfolding.Electronic.Band Unfolding.LowerBound -12 Unfolding.UpperBound 8

Unfolding.Nkpoint

<Unfolding.kpoint G 0 0 0 M 0.5 0 0 K 0.3333333 0.3333333 0 G 0 0 0 Unfolding.kpoint> on -12.0 8.0

4

on|off, default=off
default=-10 eV
default= 10 eV

ISS2018 workshop

Unfolding.desired_totalnkpt 50

Although the keyword is "unfolding", the *unfolding* is not performed! More precisely, the band is unfolded to itself (the same zone).

Step 3: Looking for the output files: Silicene.unfold_totup Silicene.unfold orbup Silicene.unfold plotexample gnuplot

gnuplot> load 'Silicene.unfold plotexample' plot 'Silicene.unfold totup' using 1:2:(\$3)*0.02 notitle with circles lc rgb 'red'

Energy (eV)

Silicene.unfold_totup

0.000000 -11.038613 1.0000000 0.000000 - 3.1896271.0000000 0.000000 - 1.1463191.0000000 0.000000 - 1.1403701.0000000 0.000000 2.287865 1.0000000 0.000000 3.125793 1.0000000 0.000000 3.130633 1.0000000 0.000000 3.321159 1.0000000 0.029271 - 11.0285001.0000000 1.0000000 0.029271 -3.182389 0.029271 -1.233445 1.0000000 0.029271 -1.161229 1.0000000 0.029271 2.363152 1.0000000

weight is 1

Step 4: Try to find something interesting

The orbital contribution can be found in Silicene.unfold_orbup and the format is k_dis (Bohr-1), energy(eV), and weight. The sequence of the orbital weights can be found in Silicene.out.

Step 5: Read output file for picking up the investigated orbitals In Silicene.out, we can find

The sequence for the orbital weights in System.Name.unfold_orbup(dn) is given below.

k dis (Bohr⁻¹), energy(eV) 2

```
p<sub>z</sub>: $7+$10+$20+$23
```

Step 6: Examine orbital contribution

gnuplot

gnuplot> load 'Silicene.unfold_plotexample'

plot 'Silicene.unfold_orbup' using 1:2:(\$7+\$10+\$20+\$23)*0.02 notitle with circles lc rgb 'red'

• The Dirac cone is composed of p_z orbitals

Step 7: Find something even more interesting Preparation for real unfolding

2

Unfolding.Electronic.Band on Unfolding.LowerBound -5.0 Unfolding.UpperBound 5.0 Unfolding.Nkpoint <Unfolding.kpoint G Ø Ø Ø K2 0.6666666 0.6666666 0 Unfolding.kpoint> Unfolding.desired_totalnkpt 51

Energy (eV)

G

on|off, default=off # default=-10 eV # default= 10 eV

Let us focus on the red path

Will the result be different if we choose a larger BZ and unfold the bands to that zone?

The choice of a new *conceptual* unit cell seems to be important.

Step 8: Find a conceptual unit cell for your purpose

• The conceptual unit cell is still commensurate with the primitive unit cell ISS2018 workshop

Step 9: Unfolding: Provide the information of conceptual cell Calculated unit cell (supercell)

Atoms.UnitVectors.Unit Ang <Atoms.UnitVectors 3.8577926 0 0 -1.9288963 3.3409463939 0 0 0 20 Atoms.UnitVectors>

Conceptual unit cell that also defines the new Brillouin zone

<Unfolding.ReferenceVectors
 1.9288963033 1.1136488 0</pre>

- 0 2.2272976 0
- 0 0 20

Unfolding.ReferenceVectors>

Unfolding.Electronic.Band	on
Unfolding.LowerBound	-5.0
Unfolding.UpperBound	5.0
Unfolding.Nkpoint	2
Unfolding.desired_totalnkpt	51

<Unfolding.Map 1 1 2 1

2 1 Unfolding.Map>

Step 10: Plot unfolded spectral weight

gnuplot

gnuplot> load 'Silicene.unfold plotexample'

plot 'Silicene.unfold_totup' using 1:2:(\$3)*0.02 notitle with circles lc rgb 'red'

Step 10: Or using intensity map

gcc intensity_map.c -lm -o intensity_map (do this in the "source" directory) ./intensity_map Silicene.unfold_totup -c 3 -k 0.5 -e 0.05 -l -5 -u 5 > map.txt modify the Silicene.unfold_plotexample as the following: set yrange [-5.000000:5.000000] set ylabel 'Energy (eV)'

```
set xtics('G' 0.000000,'K2' 1.149161)
```

set xrange [0:1.149161]

set arrow nohead from 0,0 to 1.149161,0

set pm3d map

sp 'map.txt

gnuplot> load 'Silicene.unfold_plotexample'

Step 10: Or plot unfolded spectral weight of certain orbitals

gnuplot

gnuplot> load 'Silicene.unfold_plotexample

plot 'Silicene.unfold_orbup' using 1:2:(\$7+\$10+\$20+\$23)*0.02 notitle with circles lc rgb 'red'

Free-standing silicene and graphene

Step 11: Think about what is going on

- The translational symmetry breaking seen by the conceptual unit cell is two-fold. One is the periodic Si vacancies and the other is the dislocation due to the buckling. We can see the Si_A-Si_B interference because we label them as the same atom. In the map, we define 1 and 1 (not 2).
- The missing spectral weight indicates an incomplete loop of Dirac cone at constant Energy.
- Incomplete constant-energy contour of Dirac cone observed in graphene:

Dirac cone represented by extended-zone scheme

• Dirac cone is intrinsically broken in momentum space

Chi-Cheng Lee et al., arXiv: 1707.02525 (2018), JPCM in press.

Another case for running unfolding

Step 1: Build a perfect supercell but unfold to primitive zone

System.CurrrentDirectory System.Name DATA.PATH

/ ./ Silicene /provide_your_path/DFT_DATA13

Species.Number 1
<Definition.of.Atomic.Species
Si Si7.0-s2p2d1 Si_PBE13
Definition.of.Atomic.Species>

Atoms.Number 8 Atoms.SpeciesAndCoordinates.Unit FRAC # Ang|AU <Atoms.SpeciesAndCoordinates

10101			5			
1	Si	0.166667	0.333333	0.4871	2.	2.
2	Si	0.333333	0.166667	0.5128	2.	2.
3	Si	0.666667	0.333333	0.4871	2.	2.
4	Si	0.833333	0.166667	0.5128	2.	2.
5	Si	0.166667	0.833333	0.4871	2.	2.
6	Si	0.333333	0.666667	0.5128	2.	2.
7	Si	0.666667	0.833333	0.4871	2.	2.
8	Si	0.833333	0.666667	0.5128	2.	2.

Atoms.SpeciesAndCoordinates>

Atoms.UnitVectors.Unit Ang
<atoms.unitvectors< td=""></atoms.unitvectors<>
7.7155852 0 0
-3.8577926 6.6818927878 0
0 0 20
Atoms.UnitVectors>

scf.XcType	GGA-PBE	<pre># LDA LSDA-CA LSDA-PW GGA-PBE</pre>
scf.SpinPolarization	Off	# On Off
scf.energycutoff	250.0	# default=150 (Ry)
scf.maxIter	100	# default=40
<pre>scf.EigenvalueSolver</pre>	band	<pre># Recursion Cluster Band</pre>
scf.Kgrid	4 4 1	# means n1 x n2 x n3
<pre>scf.Mixing.Type</pre>	rmm-diisk	<pre># Simple Rmm-Diis Gr-Pulay</pre>
scf.criterion	1.0e-8	# default=1.0e-6 (Hartree)

Unfolding.Electronic.Band Unfolding.LowerBound Unfolding.UpperBound	on -12.0 8.0
Unfolding.Nkpoint	4
Unfolding.desired_totalnkpt	50
<unfolding.referencevectors< td=""><td></td></unfolding.referencevectors<>	

<ur><ur><ur>3.8577926 0 0-1.9288963 3.3409463939 00 0 20Unfolding.ReferenceVectors>

<Unfolding.kpoint

G 0 0 0 M 0.5 0 0 K 0.3333333 0.3333333 0 G 0 0 0 Unfolding.kpoint>

<Unfolding.Map

Energy (eV)

Step 2: Plot unfolded band structure with SC bands

To do that, we need to turn on band dispersion
Band.dispersion on
<band.kpath.unitcell< td=""></band.kpath.unitcell<>
3.8577926 0 0
-1.9288963 3.3409463939 0
0 0 20
Band.KPath.UnitCell>
Band.Nkpath 3
<band.kpath< td=""></band.kpath<>
17 0 0 0 0.5 0 0 G M
10 0.5 0 0 0.333333 0.333333 0 M K
20 0.333333 0.333333 0 0 0 0 K G
Band.kpath>

We also need to compile

gcc bandgnu13.c -lm -o bandgnu13 and perform (to get Silicene.BANDDAT1) ./bandgnu13 Silicene.Band

We can modify the Silicene.unfold plotexample

set yrange [-12.000000:8.000000] set ylabel 'Energy (eV)' set xtics('G' 0.000000,'M' 0.497601,'K' 0.784892,'G' 1.359472) set xrange [0:1.359472] set arrow nohead from 0,0 to 1.359472,0 set arrow nohead from 0.497601,-12.000000 to 0.497601,8.000000 set arrow nohead from 0.784892,-12.000000 to 0.784892,8.000000 set style circle radius 0 set style data lines p "Silicene.BANDDAT1" notitle lc rgb 'black', "Silicene.unfold_totup" u 1:2:(\$3)*0.02 notitle w circles lc rgb 'red'

We can run gnuplot and load 'Silicene.unfold plotexample'

We have 1 and 0 in the weight

0.000000 -11.038611	1.0000000
0.000000 -8.808899	0.000000
0.000000 -8.804652	0.0000000
0.000000 -8.804652	0.0000000
(Silicene.unfold	totup)

Step 3: Perturb the atomic positions by hand

System.CurrrentDirectory System.Name DATA.PATH	/. Silic /provide_your	ene _path/DFT_DATA13	Unfolding.Electronic.Band Unfolding.LowerBound Unfolding.UpperBound	on -12.0 8.0
Species.Number 1 <definition.of.atomic.sp< td=""><td>ecies</td><td></td><td>Unfolding.Nkpoint</td><td>4</td></definition.of.atomic.sp<>	ecies		Unfolding.Nkpoint	4
Si Si7.0-s2p2d1 Si_ Definition.of.Atomic.Spe	PBE13 cies>		Unfolding.desired_totalnkpt	50
Atoms.Number 8 Atoms.SpeciesAndCoordinal <atoms.speciesandcoordinal< td=""> <atoms.speciesandcoordinal< td=""> 1 Si 0.1866 2 Si 3 Si 4 Si 0.8233 5 Si 0.1566 6 Si 0.3433 7 Si 0.6566 8 Si 0.8433 Atoms.SpeciesAndCoordinal Atoms.SpeciesAndCoordinal</atoms.speciesandcoordinal<></atoms.speciesandcoordinal<>	tes.Unit FR. ates 67 0.353333 33 0.146667 67 0.313333 33 0.156667 67 0.853333 33 0.686667 67 0.813333 33 0.686667 455>	AC # Ang AU 0.4971 2. 2. 0.5228 2. 2. 0.4871 2. 2. 0.5128 2. 2. 0.4771 2. 2. 0.5328 2. 2. 0.4671 2. 2. 0.5128 2. 2.	<pre><unfolding.referencevectors -1.9288963="" 0="" 20="" 3.3409463939="" 3.8577926="" unfolding.referencevectors=""> <unfolding.kpoint 0="" 0.3333333="" 0.5="" g="" k="" m="" unfolding.kpoint=""></unfolding.kpoint></unfolding.referencevectors></pre>	
Atoms.UnitVectors.Unit <atoms.unitvectors 7.7155852 0 0 -3.8577926 6.6818927878 0 0 20 Atoms.UnitVectors> scf.XcType scf.SpinPolarization scf.energycutoff scf.maxIter scf.EigenvalueSolver scf.Kgrid scf.Mixing.Type scf.criterion</atoms.unitvectors 	Ang GGA-PBE Off 250.0 100 band 4 4 1 rmm-diisk 1.0e-8	<pre># LDA LSDA-CA LSDA-PW GGA-PBE # On Off # default=150 (Ry) # default=40 # Recursion Cluster Band # means n1 x n2 x n3 # Simple Rmm-Diis Gr-Pulay # default=1.0e-6 (Hartree)</pre>	<unfolding.map 1 1 2 2 3 1 4 2 5 1 6 2 7 1 8 2 Unfolding.Map></unfolding.map 	

Step 4: Plot the unfolded band structure

Step 5: How about change one Si atom to C atom as an impurity

System.CurrrentDirectory ./ System.Name Silic DATA.PATH /provide_your	cene r_path/DFT_DATA13	Unfolding.Electronic.Band Unfolding.LowerBound Unfolding.UpperBound	on -12.0 8.0
Species.Number 2 <definition.of.atomic.species< td=""><td></td><td>Unfolding.Nkpoint</td><td>4</td></definition.of.atomic.species<>		Unfolding.Nkpoint	4
Si Si7.0-s2p2d1 Si_PBE13 C C7.0-s2p2d1 C_PBE13		Unfolding.desired_totalnkpt	t 50
Definition.of.Atomic.Species> Atoms.Number 8		<pre><unfolding.referencevectors 0="" 0288063="" 0<="" 3="" 3.8577926="" 3400463030="" _1="" pre=""></unfolding.referencevectors></pre>	5
Atoms.SpeciesAndCoordinates.Unit FF <atoms.speciesandcoordinates< td=""><td>RAC # Ang AU</td><td>0 0 20 Unfolding.ReferenceVectors</td><td>></td></atoms.speciesandcoordinates<>	RAC # Ang AU	0 0 20 Unfolding.ReferenceVectors	>
1 Si 0.166667 0.333333 2 Si 0.333333 0.166667 3 C 0.6666667 0.333333 4 Si 0.833333 0.166667	0.4871 2.2. 0.5128 2.2. 0.4871 2.2. 0.5128 2.2.	<unfolding.kpoint G 0 0 0 M 0.5 0 0</unfolding.kpoint 	
5Si0.1666670.8333336Si0.3333330.6666677Si0.6666670.833333	0.4871 2.2. 0.5128 2.2. 0.4871 2.2.	K 0.3333333 0.3333333 0 G 0 0 0 Unfolding.kpoint>	
8 Si 0.833333 0.6666667 Atoms.SpeciesAndCoordinates>	0.5128 2.2.	<unfolding.map< td=""><td></td></unfolding.map<>	
Atoms.UnitVectors.Unit Ang <atoms.unitvectors 7.7155852 0 0 -3.8577926 6.6818927878 0</atoms.unitvectors 		2 2 3 3 4 2 5 1	
0 0 20 Atoms.UnitVectors>		6 2 7 1 8 2	
scf.XcTypeGGA-PBEscf.SpinPolarizationOffscf.energycutoff250.0scf.maxIter100scf.EigenvalueSolverbandscf.Kgrid4 4 1scf.Mixing.Typermm-diisk	<pre># LDA LSDA-CA LSDA-PW GGA-PBE # On Off # default=150 (Ry) # default=40 # Recursion Cluster Band # means n1 x n2 x n3 # Simple Rmm-Diis Gr-Pulay</pre>	8 ∠ Unfolding.Map>	
scf.criterion 1.0e-8	# default=1.0e-6 (Hartree)	ISS	2018 workshop

Step 6: Plot the unfolded band structure

Energy (eV)

- The theoretical discussions can be found in Chi-Cheng Lee *et al.*, J. Phys.: Condens. Matter 25, 345501 (2013). Chi-Cheng Lee *et al.*, arXiv: 1707.02525 (2018), JPCM in press.
- All other details can be found in http://www.openmx-square.org/openmx_man3.8/openmx.html
 - Unfolding method for band structures
 - Analysis of band structures
 - Unfolding of band structures
 - The origin of the reference unit cell
 - Intensity map of unfolded spectral weight
 - In case of non-collinear DFT calculations
 - Examples

For example, you can also define the origin of the conceptual unit cell by yourself via "<Unfolding.ReferenceOrigin".