First-principles simulation of electrochemical reactions at solidliquid interface

National Institute of Advanced Industrial Science and Technology (AIST), Japan

Minoru Otani

07/03/2018 ISS2018@ISSP

Outline

- Introduction
- Simulation platform for electrochemical interface
 - Effective screening medium (ESM) method
 - Constant bias potential (constant- μ_e) method
 - Hybrid simulation method: DFT+liquid theory (ESM-RISM)
- Applications
 - Lithium Insertion/Desorption Reaction in Li-ion battery
- Summary
- Appendix (How to define the electrode potential from DFT)

Electrochemical devices/engineering

Battery

Manganese dry cell

Lead battery

NiCd, NiH secondary battery Fuel cell

Lithium secondary battery

<u>Capacitor</u>

Electrolytic condenser Double layer condenser Supercapacitor

Photovoltaic cell

c-Si, a-Si solar cell Dye sensitized solar cell photoelectrochemical hydrogen production

<u>Sensor</u>

pH meter

ion selective concentration meter glucose, etc. (using enzyme) gas (oxygen, etc.) <u>Electroplating</u> <u>Cathodic protection</u> $Fe \rightarrow Fe_2O_3$ <u>Electrolysis</u> Aluminum, Copper, etc. Water, salt, etc. Organic chemicals tetraethyl lead

Target systems

- overpotential
- a cheaper alternative to Pt

- formation mechanism of SEI
- interface resistance

Energy harvesting (PV, PEC)

- corrosion mechanism
- surface modification

Electrochemical interface

4 Challenges in modeling an electrochemical reaction for DFT-MD

4 Challenges in modeling an electrochemical reaction for DFT-MD

1.Strong electric field in Helmholtz layer

ESM method

Effective Screening Medium method

Phys. Rev. B 73, 115407 (2006)

2.Bias potential control

Constant- μ_e method

Phys. Rev. Lett. 109, 266101 (2012)

3.Screening in diffuse layer

4.Origin of electrostatic potential

ESM-RISM method

Reference Interaction Site Model

Phys. Rev. B 96,115429 (2017)

Solvation process of Li-ion

Electrochemical impedance spectroscopy (EIS) measurements

Typical EIS of Conventional LIB cell LiCoO2|EC3:EMC7 LiPF6 1M|Graphite

In the fully charged and discharged states as well as at the low temperatures (≤ 20 °C), the R_{cell} of the Liion cells is predominated by the R_{ct} .

S. S. Zhang, K. Xu, and T. R. Jow, Electrochemica Acta 49, 1057 (2004).

Temperature-dependence of R_{ct} @0.2 V vs. Li/Li+

The activation energies were evaluated to be around 50-60 kJ/mol (0.5-0.6 eV). These values are very large compared to lithium ion conduction in active materials.

T. Abe, H. Fukuda, Y. Iriyama, and Z. Ogumi, J. Electrochem. Soc. 151, A1120 (2004).

Outline

- Introduction
- Simulation platform for electrochemical interface
 - Effective screening medium (ESM) method
 - Constant bias potential (constant- μ_e) method
 - Hybrid simulation method: DFT+liquid theory (ESM-RISM)
- Applications
 - Lithium Insertion/Desorption Reaction in Li-ion battery
- Summary
- Appendix (How to define the electrode potential from DFT)

Total energy functional in conventional method

1- interior al

Total energy functional

$$E[\rho_{c}] = T[\rho_{c}] + E_{xc}[\rho_{c}] + \frac{1}{2} \iint d\mathbf{r} d\mathbf{r}' \frac{\rho_{c}(\mathbf{r})\rho_{c}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + \int d\mathbf{r} v_{ext}(\mathbf{r})\rho_{c}(\mathbf{r}) + E_{II}$$

$$\frac{\delta E}{\delta \rho_{c}} = 0 \qquad \text{Kohn-Sham equation}$$

$$\begin{bmatrix} -\frac{1}{2}\nabla^{2} + V(\mathbf{r}) + \hat{V}_{NL} + V_{xc}(\mathbf{r}) \end{bmatrix} \psi_{i}(\mathbf{r}) = \varepsilon_{i}\psi_{i}(\mathbf{r})$$

$$\int \text{Poisson equation is solved with}_{periodic boundary condition in}_{advance and use the following}$$

$$V(\mathbf{r}) = \int d\mathbf{r}' \frac{\rho_{\text{tot}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} = \int d\mathbf{r}' G^{\text{PBC}}(\mathbf{r}, \mathbf{r}')\rho_{\text{tot}}(\mathbf{r}')$$
Need to solve Poisson eq. with different BC.

Boundary condition at the interface

2D periodic boundary condition (2D PBC)

Boundary condition at the interface

 In the density functional theory (DFT), we need to solve two equations.

Kohn-Sham equation

$$\left[-\frac{1}{2}\nabla^2 + V(\boldsymbol{r}) + \hat{V}_{\rm NL} + V_{\rm xc}(\boldsymbol{r})\right]\psi_i(\boldsymbol{r}) = \varepsilon_i\psi_i(\boldsymbol{r})$$
$$\rightarrow 3{\sf D}\;{\sf PBC}$$

Poisson equation

 $\nabla[\epsilon(\boldsymbol{r})\nabla]V(\boldsymbol{r}) = -4\pi\rho_{\rm tot}(\boldsymbol{r})$

→2D PBC + OBC

12

Effective screening medium (ESM)

M.O. and O. Sugino, PRB 73, 115407 (2006)

How to solve the poisson equation under MBC?

$$\nabla[\epsilon(\boldsymbol{r})\nabla]V(\boldsymbol{r}) = -4\pi\rho_{\text{tot}}(\boldsymbol{r})$$

$$\int \mathbf{Laue \ representation}$$

$$[\partial_z\{\epsilon(z)\partial\} - \epsilon(z)g_{||}^2]V(\boldsymbol{g}_{||}, z) = -4\pi\rho(\boldsymbol{g}_{||}, z)$$

$$[\partial_z\{\epsilon(z)\partial\} - \epsilon(z)g_{||}^2]G(\boldsymbol{g}_{||}, z, z') = -4\pi\delta(\boldsymbol{g}_{||}, z - z')$$

We can get Green's function analytically with each boundary conditions.

Effective screening medium (ESM)

M.O. and O. Sugino, PRB 73, 115407 (2006)

(i)
$$\partial_z V(g_{\parallel}, z) \Big|_{z=\pm\infty} = 0, \quad \epsilon(z) = 1$$

(ii)

$$\begin{cases} V(g_{\parallel}, z_{1}) = 0\\ \partial_{z} V(g_{\parallel}, z) \big|_{z = -\infty} = 0 \end{cases}$$

$$\epsilon(z) = \begin{cases} 1 & \text{if } z \ge z_{1} \\ \infty & \text{if } z \le z_{1} \end{cases}$$

(iii)

$$\begin{cases} V(g_{\parallel}, z_1) = 0 \\ V(g_{\parallel}, -z_1) = V_0 \end{cases}$$

$$\epsilon(z) = \infty \quad \text{if} \quad |z| \ge z_1$$

neutral surface, polarized surface...

STM, gate electrode...

nano-structure in capacitor, zigzag pot.

Effective screening medium (ESM)

M.O. and O. Sugino, PRB 73, 115407 (2006)

$$G^{(i)}(g_{\parallel}, z, z') = \frac{4\pi}{2g_{\parallel}} e^{-g_{\parallel}|z-z'|}$$

 $G^{(\mathrm{ii})}(g_{\parallel}, z, z') = \frac{4\pi}{2g_{\parallel}} \mathrm{e}^{-g_{\parallel}|z-z'|} - \frac{4\pi}{2g_{\parallel}} \mathrm{e}^{-g_{\parallel}(2z_1-z-z')}$

$$\begin{aligned} G^{(\text{iii})}(g_{\parallel}, z, z') = & \frac{4\pi}{2g_{\parallel}} e^{-g_{\parallel}|z-z'|} \\ &+ \frac{4\pi}{2g_{\parallel}} \frac{e^{-2g_{\parallel}z_1} \cosh\{g_{\parallel}(z-z')\} - \cosh\{g_{\parallel}(z+z')\}}{\sinh(2g_{\parallel}z_1)} \end{aligned}$$

Total energy functional of the ESM method

Total energy functional

$$E[\rho] = T[\rho] + E_{xc}[\rho] + \frac{1}{2} \iint dr dr' \frac{\rho(r)\rho(r')}{|r - r'|} + \int dr v_{ext}(r)\rho(r) + E_{ion}$$

$$V \implies variable$$

$$E[\rho_{e}, V] = T[\rho_{e}] + E_{xc}[\rho_{e}] + \int dr \left[+ \frac{\epsilon(r)}{8\pi} |\nabla V(r)|^{2} + \rho_{tot}(r)V(r) \right]$$

$$\frac{\delta E}{\delta V} = 0$$

$$\nabla[\epsilon(r)\nabla]V(r) = -4\pi\rho_{tot}(r)$$

$$Conventional$$

$$\epsilon(r) = 1$$

$$V(r) = \int dr \frac{\rho_{tot}(r')}{|r - r'|}$$

$$Kohn-Sham equation$$

$$\epsilon(r) : model dependent$$

$$V(r) = \int dr G(r, r')\rho_{tot}(r')$$

Schematic animation of electrochemical interface simulation

J. Phys. Soc. Jpn 77, 024802 (2008)

Electrochemical reaction

J. Phys. Soc. Jpn 77, 024802 (2008)

Q=-0.95 (e/cell)

Outline

- Introduction
- Simulation platform for electrochemical interface
 - Effective screening medium (ESM) method
 - Constant bias potential (constant- μ_e) method
 - Hybrid simulation method: DFT+liquid theory (ESM-RISM)
- Applications
 - Lithium Insertion/Desorption Reaction in Li-ion battery
- Summary
- Appendix (How to define the electrode potential from DFT)

Why we need a bias control?

Limitation of the original conventional DFT-MD

A. Lozovoi et al., JCP 115, 1661 (2001)

How to realize constant- μ_e system

Grand canonical ensemble in electronic system

If we can introduce a fictitious motion for amount of charge n_e , we can realize NVTµ_e MD simulation

Constant pressure MD (Andersen method)

H. C. Andersen, J. Chem. Phys. 72, 2384 (1980)

- Consider the volume as a dynamics variable
- Replace the coordinates r_i by scaled coordinates \tilde{r}_i ,

$$\boldsymbol{r}_i = V^{\frac{1}{3}} \tilde{\boldsymbol{r}}_i, \ (0 \le \tilde{r}_i \le 1)$$

and the time derivative of ${ ilde r}_i$ is defined as ${\dot r}_i = V^{rac{1}{3}} {\dot { ilde r}}_i$

Lagrangian for extended system

$$L_P = \frac{1}{2} \sum_{i}^{N} m_i V^{\frac{2}{3}} \dot{\tilde{r}}_i^2 - E(\{V^{\frac{1}{3}} \tilde{r}\}; \psi) + \frac{1}{2} W \dot{V}^2 - P_{\text{ext}} V$$

where, W is the fictitious mass of the cell. The Euler-Lagrange equation becomes

$$\begin{cases} m_i \ddot{\tilde{r}}_i = -V^{-\frac{2}{3}} \frac{\partial E(\{V^{\frac{1}{3}} \tilde{r}\}; \psi)}{\partial \tilde{r}_i} - \frac{2\dot{V}}{3V} \dot{\tilde{r}} \\ W\ddot{V} = \frac{1}{3V} \left[\sum_{i}^{N} m_i V^{\frac{2}{3}} \dot{\tilde{r}}_i^2 - \sum_{i}^{N} r_i \cdot \frac{\partial E(\{r\}; \psi)}{\partial r_i} \right] - P_{\text{ext}} \end{cases} \text{ Instantaneous pressure}$$
(Virial theorem)

Constant-µ MD

N. Bonnet et al., Phys. Rev. Lett. 109, 266101 (2012)

- Consider FCP as a dynamical variable
- Connecting the system to a potentiostat to keep the Fermi energy of the system as target Fermi energy μ_{ext} .

Lagrangian for extended system

$$L_{\mu} = \frac{1}{2} \sum_{i}^{N} m_{i} \dot{\boldsymbol{r}}_{i}^{2} - E(\{\boldsymbol{r}\}; \psi) + \frac{1}{2} M \dot{n}^{2} - (-\mu_{\text{ext}} n)$$

where, M is the fictitious mass of FCP. The Euler-Lagrange equation becomes

$$\begin{cases} m_i \ddot{\boldsymbol{r}}_i = -\frac{\partial E(\{\boldsymbol{r}_i\}; \psi)}{\partial \boldsymbol{r}_i} \\ M\ddot{n} = -\left(\frac{\partial E(\{\boldsymbol{r}_i\}; \psi)}{\partial n} - \mu_{\text{ext}}\right) \end{cases}$$
Instantaneous Fermi energy

Statistical ensemble

By connecting an appropriate thermostat, e.g. Nosé thermostat, scaling method..., we can realize an isobaric and grand canonical ensembles.

Isobaric

Grand canonical (for electron)

Partition

$$Y = \iiint \exp\left[-(\mathcal{H} + P_{\text{ext}}V)/k_BT\right] d\mathbf{r} d\mathbf{q} dV \quad \Xi_{\mu} = \iiint \exp\left[-(\mathcal{H} - \mu_{\text{ext}}n)/k_BT\right] d\mathbf{r} d\mathbf{q} dn$$

$$\mathcal{H} = \frac{1}{2} \sum_{i}^{N} m_i \mathbf{r}_i^2 + E(\{\mathbf{r}\}; \psi) \qquad \qquad \mathcal{H} = \frac{1}{2} \sum_{i}^{N} m_i \mathbf{r}_i^2 + E(\{\mathbf{r}\}; \psi)$$

Compressibility

Fluctuation of extensive variable

 κ

$$= -\frac{1}{\langle V \rangle} \frac{\partial \langle V \rangle}{\partial P_{\text{ext}}} = \frac{\langle \delta V^2 \rangle}{k_B T \langle V \rangle}$$

Capacitance

$$C = \frac{\partial \langle n \rangle}{\partial \mu_{\text{ext}}} = \frac{\langle \delta n^2 \rangle}{k_B T}$$

Johnson-Nyquist noise

How to realize constant-µ system

 Fictitious charge particle (FCP) is introducted with fictitious mass.

 $\Phi(V)$

- For static calculation, FCP is optimized by line minimization scheme. We can obtain the grand potential.
- For MD simulation, FCP is evolved by equation of motion for FCP. We can obtain the grand canonical ensemble.
- FCP is updated at each atomic step. (e.g., Geometry optimization step, MD step)

NEB method in Ω -space

Searching the minimum energy path (MEP) using NEB with constant-µ

Constrained geometry optimisation on hyperplane in \tilde{E} -space

FCP is also updated at each atomic step. \Rightarrow no additional calculation cost

Generalized force acting on atoms & FCP

Minimize Ω instead of the total energy E

$$\Omega = E - \mu_{\text{ext}} n$$

 \tilde{E} includes the potential $\mu_{\text{ext}}n$ derived from an external potentiostat. Force acting on atoms

$$\boldsymbol{F}_i = -\frac{\partial \Omega}{\partial \boldsymbol{r}_i} = -\frac{\partial E}{\partial \boldsymbol{r}_i}$$

Force acting on FCP

$$F^{\rm FCP} = -\frac{\partial\Omega}{\partial n} = -(\mu - \mu_{\rm ext})$$

We need to consider the generalized force acting on atoms & FCP to optimize the geometry and μ .

How to realize constant-µ system

 Fictitious charge particle (FCP) is introducted with fictitious mass.

 $\Phi(V)$

- For static calculation, FCP is optimized by line minimization scheme. We can obtain the grand potential.
- For MD simulation, FCP is evolved by equation of motion for FCP. We can obtain the grand canonical ensemble.
- FCP is updated at each atomic step. (e.g., Geometry optimization step, MD step)

Test calculation (Pt-H₂O interface)

Outline

- Introduction
- Simulation platform for electrochemical interface
 - Effective screening medium (ESM) method
 - Constant bias potential (constant- μ_e) method
 - Hybrid simulation method: DFT+liquid theory (ESM-RISM)
- Applications
 - Lithium Insertion/Desorption Reaction in Li-ion battery
- Summary
- Appendix (How to define the electrode potential from DFT)

Simulation platform for electrochemical interfaces

1.Strong electric field in Helmholtz layer

ESM method

Effective Screening Medium method

Phys. Rev. B 73, 115407 (2006)

2.Bias potential control

Constant-µ method

Phys. Rev. Lett. 109, 266101 (2012)

3.Screening in diffuse layer

4.Origin of electrostatic potential

ESM-RISM method

Reference Interaction Site Model

Phys. Rev. B 96,115429 (2017)

Simulation platform for electrochemical interfaces

•Explicit solvation model

- All atom calculation
- BOMD, CPMD, ...

Implicit solvation model

- Classical liquid theory
- JDFTx, ENVIRON, PCM,...

3.Screening in diffuse layer

4.Origin of electrostatic potential

ESM-RISM method

Reference Interaction Site Model

Phys. Rev. B 96,115429 (2017)

LANTO CHE DO CONTRACTOR OF THE ANTO CHE DO CONTRACTOR OF THE

Total energy functional

$$E[\rho] = T[\rho] + E_{xc}[\rho] + \frac{1}{2} \iint dr dr' \frac{\rho(r)\rho(r')}{|r - r'|} + \int dr v_{ext}(r)\rho(r) + E_{ion}$$

$$V \implies variable$$

$$E[\rho_{e}, V] = T[\rho_{e}] + E_{xc}[\rho_{e}] + \int dr \left[+ \frac{\epsilon(r)}{8\pi} |\nabla V(r)|^{2} + \rho_{tot}(r)V(r) \right]$$

$$\frac{\delta E}{\delta V} = 0$$

$$\Rightarrow Generalized Poisson equation$$

$$\nabla[\epsilon(r)\nabla]V(r) = -4\pi\rho_{tot}(r) \longleftarrow \rho_{tot} = \rho_{DFT} + \rho_{solv}$$

$$Kohn-Sham equation$$

$$\begin{bmatrix} -\frac{1}{2}\nabla^{2} + V(r) + \hat{V}_{NL} + V_{xc}(r) \end{bmatrix} \psi_{i}(r) = \varepsilon_{i}\psi_{i}(r)$$

$$PCM: Environ$$

$$RISM: ESM-RISM CDFT: JDFT$$

Generalized Poisson equation

 $\nabla[\epsilon(\boldsymbol{r})\nabla]V(\boldsymbol{r}) = -4\pi\rho_{\rm tot}(\boldsymbol{r}) \longleftarrow \rho_{\rm tot} = \rho_{\rm DFT} + \rho_{\rm solv}$

Generalized Poisson equation

$$\nabla[\epsilon(\boldsymbol{r})\nabla]V(\boldsymbol{r}) = -4\pi\rho_{\rm tot}(\boldsymbol{r}) \longleftarrow \rho_{\rm tot} = \rho_{\rm DFT} + \rho_{\rm solv}$$

 $\begin{aligned} & \mathsf{PCM, JDFT} \\ \epsilon(\boldsymbol{r}) = 1 \\ & V(\boldsymbol{r}) = \int \mathrm{d}\boldsymbol{r} \frac{\rho_{\mathrm{tot}}(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} \end{aligned}$ $\begin{aligned} & \mathsf{ESM} \\ \epsilon(\boldsymbol{r}) : \mathsf{model dependent} \\ & V(\boldsymbol{r}) = \int \mathrm{d}\boldsymbol{r}' G^{\mathrm{MBC}}(\boldsymbol{r}, \boldsymbol{r}') \rho_{\mathrm{tot}}(\boldsymbol{r}') \end{aligned}$

Laue representation $\left[\partial_{z} \left\{\epsilon(z)\partial_{z}\right\} - \epsilon(z)g_{\parallel}^{2}\right] V(\boldsymbol{g}_{\parallel}, z) = -4\pi\rho_{\text{tot}}(\boldsymbol{g}_{\parallel}, z)$ Open boundary condition $\partial_z V(\boldsymbol{g}_{\parallel}, z) \Big|_{z=\pm\infty} = 0, \ \epsilon(z) = 1$ $\begin{cases} G^{\text{MBC}}(\boldsymbol{g}_{\parallel}, z, z') = \frac{4\pi}{2g_{\parallel}} e^{-g_{\parallel}|z-z'|} \\ G^{\text{MBC}}(\boldsymbol{r}_{\parallel} - \boldsymbol{r}'_{\parallel}, z, z') = \frac{1}{\sqrt{|\boldsymbol{r}_{\parallel} - \boldsymbol{r}'_{\parallel}|^2 + (z-z')^2}} \end{cases}$

Я

Total energy functional

$$E[\rho] = T[\rho] + E_{xc}[\rho] + \frac{1}{2} \iint dr dr' \frac{\rho(r)\rho(r')}{|r - r'|} + \int dr v_{ext}(r)\rho(r) + E_{ion}$$

$$V \implies variable$$

$$E[\rho_{e}, V] = T[\rho_{e}] + E_{xc}[\rho_{e}] + \int dr \left[+ \frac{\epsilon(r)}{8\pi} |\nabla V(r)|^{2} + \rho_{tot}(r)V(r) \right]$$

$$\frac{\delta E}{\delta V} = 0$$

$$Figure = 0$$

$$\nabla[\epsilon(r)\nabla]V(r) = -4\pi\rho_{tot}(r)$$

$$V(r) = \int dr \frac{\rho_{tot}(r')}{|r - r'|}$$

$$Figure = 0$$

$$Kohn-Sham equation$$

$$\left[-\frac{1}{2}\nabla^{2} + V(r) + \hat{V}_{NL} + V_{xc}(r) \right] \psi_{i}(r) = \varepsilon_{i}\psi_{i}(r)$$

Continuum Genealogy

Implicit solvation models

What is the RISM theory?

Ornstein-Zernike equation

$$\begin{cases}
h(\mathbf{r}_1, \mathbf{r}_2) = c(\mathbf{r}_1, \mathbf{r}_2) + \int d\mathbf{r}_3 c(\mathbf{r}_1, \mathbf{r}_3) \rho(\mathbf{r}_3) h(\mathbf{r}_3, \mathbf{r}_2)
\end{cases}$$
Total correlation function

$$h(\mathbf{r}_1, \mathbf{r}_2) = g(\mathbf{r}_1, \mathbf{r}_2) - 1$$
Pair distribution function

$$h(12) = c(12) + \int d(3)c(13)\rho(3)c(32) + \int d(3)d(4)c(13)\rho(3)c(34)\rho(4)c(42) \cdots$$

1D-RISM

1D-RISM equation

$$\begin{cases} h_{\alpha\gamma}(r) = \sum_{\mu\nu} \int d\mathbf{r}' \int d\mathbf{r}'' \omega_{\alpha\mu} (|\mathbf{r} - \mathbf{r}'|) c_{\mu\nu} (|\mathbf{r}' - \mathbf{r}''|) \chi_{\nu\gamma}(r'') \\ \omega_{\alpha\mu}(r) = \frac{1}{4\pi r^2} \delta(r - l_{\alpha\mu}) \\ \chi_{\nu\gamma}(r) = \omega_{\nu\gamma}(r) + \rho_{\gamma} h_{\nu\gamma}(r) \end{cases}$$

Closure relation (Kovalenco-Hirata)

$$g_{\alpha\gamma}(r) = \begin{cases} \exp\left[-\beta u_{\alpha\gamma}(r) + h_{\alpha\gamma}(r) - c_{\alpha\gamma}(r)\right] & \text{for } g_{\alpha\gamma} \leq 1\\ 1 - \beta u_{\alpha\gamma}(r) + h_{\alpha\gamma}(r) - c_{\alpha\gamma}(r) & \text{for } g_{\alpha\gamma} > 1 \end{cases}$$

Interaction between atomic sites (Lennard-Jones + Coulomb)

$$\begin{cases} u_{\alpha\gamma}(r) = 4\epsilon_{\alpha\beta} \left[\left(\frac{\sigma_{\alpha\beta}}{r} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r} \right)^{6} \right] + \frac{q_{\alpha}q_{\gamma}}{r} \\ \epsilon_{\alpha\beta} = \sqrt{\epsilon_{\alpha}\epsilon_{\gamma}} \\ \sigma_{\alpha\gamma} = \frac{\sigma_{\alpha} + \sigma_{\gamma}}{2} \end{cases}$$

$$\tag{43}$$

Bulk liquid ex) 1ML NaCl@Water

3D-RISM

3D-RISM equation

$$\begin{cases} \chi_{\nu\gamma}(\boldsymbol{r}) = \sum_{\boldsymbol{g}} \chi_{\nu\gamma}(\boldsymbol{g}) e^{i\boldsymbol{g}\cdot\boldsymbol{r}} \\ h_{\gamma}(\boldsymbol{r}) = \sum_{\nu} \int d\boldsymbol{r}' c_{\nu}(\boldsymbol{r}') \chi_{\nu\gamma}(\boldsymbol{r}'-\boldsymbol{r}) \end{cases}$$

Closure relation (Kovalenco-Hirata)

$$g_{\gamma}(\boldsymbol{r}) = \begin{cases} \exp\left[-\beta u_{\gamma}(\boldsymbol{r}) + h_{\gamma}(\boldsymbol{r}) - c_{\gamma}(\boldsymbol{r})\right] & \text{for } g_{\gamma} \leq 1\\ 1 - \beta u_{\gamma}(\boldsymbol{r}) + h_{\gamma}(\boldsymbol{r}) - c_{\gamma}(\boldsymbol{r}) & \text{for } g_{\gamma} > 1 \end{cases}$$

Interaction between atomic sites (Lennard-Jones + Coulomb)

$$u_{\gamma}(\boldsymbol{r}) = \sum_{A} 4\epsilon_{\gamma A} \left[\left(\frac{\sigma_{\gamma A}}{|\boldsymbol{r} - \boldsymbol{R}_{A}|} \right)^{12} - \left(\frac{\sigma_{\gamma A}}{|\boldsymbol{r} - \boldsymbol{R}_{A}|} \right)^{6} \right] + \int \mathrm{d}\boldsymbol{r}' \frac{q_{\gamma} \rho_{DFT}}{|\boldsymbol{r} - \boldsymbol{r}'|}$$

RISM

Laue-RISM

Laue-RISM equation $\begin{cases}
\chi_{\nu\gamma}(\boldsymbol{g}_{\parallel}, z' - z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}g_{z} \chi_{\nu\gamma}(g) \mathrm{e}^{\mathrm{i}g_{z}(z'-z)} \\
h_{\gamma}(\boldsymbol{g}_{\parallel}, z) = \sum_{\nu} \int \mathrm{d}z' c_{\nu}(\boldsymbol{g}_{\parallel}, z') \chi_{\nu\gamma}(\boldsymbol{g}_{\parallel}, z' - z)
\end{cases}$

Closure relation (Kovalenco-Hirata)

$$g_{\gamma}(\boldsymbol{r}) = \begin{cases} \exp\left[-\beta u_{\gamma}(\boldsymbol{r}) + h_{\gamma}(\boldsymbol{r}) - c_{\gamma}(\boldsymbol{r})\right] & \text{for } g_{\gamma} \leq 1\\ 1 - \beta u_{\gamma}(\boldsymbol{r}) + h_{\gamma}(\boldsymbol{r}) - c_{\gamma}(\boldsymbol{r}) & \text{for } g_{\gamma} > 1 \end{cases}$$

Interaction between atomic sites (Lennard-Jones + Coulomb)

$$u_{\gamma}(\boldsymbol{r}) = \sum_{A} 4\epsilon_{\gamma A} \left[\left(\frac{\sigma_{\gamma A}}{|\boldsymbol{r} - \boldsymbol{R}_{A}|} \right)^{12} - \left(\frac{\sigma_{\gamma A}}{|\boldsymbol{r} - \boldsymbol{R}_{A}|} \right)^{6} \right] + \int d\boldsymbol{r}' G^{\text{MBC}}(\boldsymbol{r}, \boldsymbol{r}') \rho_{\text{DFT}}(\boldsymbol{r}')$$

AI - NaCI aqueous interface

AI/NaCI溶液界面(電気二重層)

RISM vs. Debye Hückel

Outline

- Introduction
- Simulation platform for electrochemical interface
 - Effective screening medium (ESM) method
 - Constant bias potential (constant- μ_e) method
 - Hybrid simulation method: DFT+liquid theory (ESM-RISM)
- Applications
 - Lithium Insertion/Desorption Reaction in Li-ion battery
- Summary
- Appendix (How to define the electrode potential from DFT)

Solvation process of Li-ion

Electrochemical impedance spectroscopy (EIS) measurements

Typical EIS of Conventional LIB cell LiCoO2|EC3:EMC7 LiPF6 1M|Graphite

In the fully charged and discharged states as well as at the low temperatures ($\leq 20_{\circ}$ C), the R_{cell} of the Liion cells is predominated by the R_{ct} .

S. S. Zhang, K. Xu, and T. R. Jow, Electrochemica Acta 49, 1057 (2004).

Temperature-dependence of R_{ct} @0.2 V vs. Li/Li+

The activation energies were evaluated to be around 50-60 kJ/mol (0.5-0.6 eV). These values are very large compared to lithium ion conduction in active materials.

T. Abe, H. Fukuda, Y. Iriyama, and Z. Ogumi, J. Electrochem. Soc. 151, A1120 (2004).

51

Definition of the electrode potential (Calculation)

Summary

- We have developed a series of simulations methods to simulate the electrode/electrolyte interface.
- We can define the reference electrode potential which is consistent with thermodynamics and electrochemistry.
- Our simulation technique is applicable many electrochemical systems, such as secondary ion batteries, fuel cells, collision, electroplating, ion exchange membrane