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Electric polarization

• Fundamental physical quantity of insulators

• Characterize dielectric properties of insulators

• Piezoelectricity, Ferroelectricity, Magnetoelectric effect

• Many applications

• Capacitor, Piezoelectric device, Ferroelectric memory

• Momentum dependence: Characterize topological insulators



Perturbations and Responses
1. Mecanical 2. Thermal 3. Electric 4. Magnetic 5. Chemical

1. Mecanical Elasticity Thermal 
expansion

Electromechanical Magnetostriction Osmotic pressure

2. Thermal Thermal 
insulating

Thermal 
conductivity

Pyroelectric/
Thermoelectric 
(Peltier)

Thermomagnetic Heat diffusion

3. Electric Piezoelectric Pyroelectric/
Thermoelectric
(Seebeck)

Electric Polarization
Electric Conductivity

Magnetoelectric Battery

4. Magnetic Magnetostriction Thermomagnetic Magnetoelectric Magnetization ?

5. Chemical Osmotic pressure Heat diffusion Battery ? diffusion

Perturbations

Responses

Based on the table of  Hidetoshi Takahashi 
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Dipole sum of discrete charges

Periodic boundary condition

The polarization P is defined as the dipole moment 
per unit volume, averaged over the volume of a cell. 

In the textbook …



Problems in electric polarization

• Resta (1992): 
Contrary to common textbook statements, 
the dipole of a periodic charge distribution 
is ill defined, except the case in which the 
total charge is unambiguously decomposed 
into an assembly of localized and neutral 
charge distributions.

P is not a bulk property, while the 
variations of P are indeed measurable.



Can we compute	P from	charge	density	?

∇⋅Pel (r) = −ρ(r)

Local	polarization	field Pel(r)

Charge distribution is continuous in real materials.

Pel =
1
Ω

P(rcell∫ )dr

= 1
Ω

drρ(r)rcell∫ + 1
Ω

r n ⋅P(r)[ ]dssurface∫

Conclusion�

•Absolute value of polarization is not bulk property

•Dipole moment divided by unit cell volume ≠ Polarization

R. M. Martin, PRB 9, 1998(1974).

cell to cell term (current)



Observation of electric polarization

• Current induced by perturbation

• Change in polarization by perturbation
J λ( ) = ∂P

∂λ

ΔP = J λ( )dλ∫ = ∂P
∂λ

dλ∫

A

⬆

⬇

j = −nev

ΔP = −nev
0

Δt

∫ dt = −ner(Δt )[ ] − −ner(0)[ ]

= P(Δt) − P(0)

In	classical	way:	



Electric currents and polarization I

Electric polarization expressed by wave function
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Electric currents and polarization II

Electric polarization expressed by wave function
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Velocity operator
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Electric currents and polarization III

Electric polarization expressed by wave function
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Electric currents and polarization IV

Heisenberg Equation of Motion

i!dr
dt

= [r; H]

i!v = [r; H]

Bloch wavefunction and its periodic part

~H = e`ik´rHeik´r

e`ik´r[r; H]eik´r = e`ik´r
 

i!dr
dt

!

eik´r = i!~v
if [rk; H] = 0,

rk ~H = `ire`ik´rHeik´r + e`ik´rHeik´rir
rk ~H = `i[r; ~H] = !~v

h k
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Electric currents and polarization V

Electric polarization expressed by wave function
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Electric currents and polarization VI

First-order perturbation theory

‹ ~H = ~H(k+´k)` ~H(k)
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Ordinary derivative to partial derivative

d

dt
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Electric currents and polarization VII

Electric polarization expressed by wave function

Z ´t

0
dt
dP

dt
= P (´t)` P (0)

=
`ie
8ı3

Z ´t

0
dt
Z

BZ
dk

occX

n=1

“
h@tuk

njrku
k
ni ` hrku

k
nj@tuk

ni
”

=
`ie
8ı3

Z ´t

0
dt
Z

BZ
dk

occX

n=1

“
@thuk

njrku
k
ni ` rkhuk

nj@tuk
ni
”

For k¸ direction;
P¸(´t)` P¸(0)

=
ie

8ı3

Z

dk˛dk‚ ˆ
Z ´t

0
dt
Z G¸

0
dk¸

occX

n=1

“
@k¸huk

nj@tuk
ni ` @thuk

nj@k¸uk
ni
”



Electric polarization 
expressed by Berry phase 

(King-Smith & Vanderbilt 1993) 

Electric currents and polarization X

Electric polarization expressed by wave function
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Electric currents and polarization XI

Example: Orthorhombic unitcell
Case: (k˛; k‚) = (0; 0) sampling , G˛ = 2ı
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Computing Electric Polarization II

Numerical calculation of Berry Phase
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Snm(k; k0; t) ” huk
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We use well-known matrix identity, det exp A = exp tr A,
when A = logS $ expA = S. log detS = tr logS.
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Computing Electric Polarization III

Numerical calculation of Berry Phase
A = logS $ expA = S

det exp A = exp tr A, log detS = tr logS
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Computing Electric Polarization IV

Numerical calculation of Berry Phase
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If we use k-point sampling mesh J along k¸ direction,
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Computing Electric Polarization V

Numerical calculation of Berry Phase
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Overlap matrix S in OpenMX

Electric Polarization by Berry Phase: Ver. 1.1

Taisuke Ozaki, RCIS, JAIST

June 11, 2008

The polarization coming from the electric contribution is given by

P =
3∑

k=1

Pi Ri. (1)

Pi can be evaluated by the following Berry phase formula [1, 2]:

2πPi = Gi · P

= − e

(2π)3
∑

σ

∫

B
dk3Gi ·

(
∂

∂k′ ησ(k,k′)
)

k′=k
, (2)

where
∫
B means that the integral over the first Brillouin zone of which volume is VB. The quantum

phase ησ(k,k′) is given by

ησ(k,k′) = Im
{
ln

(
det⟨u(k)

σµ |u(k′)
σν ⟩

)}
, (3)

where µ and ν run over the occupied states. The integration and derivative in Eq. (2) are approximated
by a discretization:

Gi · P ≈ − e

VBN2N3

∑

σ

N2−1,N3−1∑

i2=0,i3=0

N1−1∑

i1=0

ησ(ki1i2i3 ,k
′
i1+1i2i3). (4)

Noting that

ψ(k)
σµ (r) = eik·ru(k)

σµ (r),

=
1√
N

N∑

n

eiRn·k
∑

iα

c(k)
σµ,iαφiα(r − τi − Rn), (5)

the overlap matrix ⟨u(k)
σµ |u(k+∆k)

σν ⟩ in Eq. (3) is evaluated as

⟨u(k)
σµ |u(k+∆k)

σν ⟩ = ⟨ψ(k)
σµ |eik·re−ik·re−i∆k·r|ψ(k+∆k)

σν ⟩,
= ⟨ψ(k)

σµ |e−i∆k·r|ψ(k+∆k)
σν ⟩,

=
1
N

∑

n,n′

∑

iα,jβ

c(k)∗
σµ,iαc(k+∆k)

σν,jβ e−ik·(Rn−Rn′ ) ×

⟨φiα(r − τi − Rn)|e−i∆k·(r−Rn′ )|φjβ(r − τj − Rn′)⟩. (6)

Defining that

r′ = r − τi − Rn, (7)
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Overlap matrix S in OpenMX
we have

⟨u(k)
σµ |u(k+∆k)

σν ⟩ =
1
N

∑

n,n′

∑

iα,jβ

c(k)∗
σµ,iαc(k+∆k)

σν,jβ e−ik·(Rn−Rn′ ) ×

⟨φiα(r′)|e−i∆k·(r′+τi+Rn−Rn′ )|φjβ(r′ + τi − τj + Rn − Rn′)⟩. (8)

Since each term depends on only the relative position Rn − Rn′ , Eq. (8) becomes

⟨u(k)
σµ |u(k+∆k)

σν ⟩ =
∑

n

∑

iα,jβ

c(k)∗
σµ,iαc(k+∆k)

σν,jβ eik·Rn × ⟨φiα(r′)|e−i∆k·(r′+τi−Rn)|φjβ(r′ + τi − τj − Rn)⟩,

=
∑

n

∑

iα,jβ

c(k)∗
σµ,iαc(k+∆k)

σν,jβ eik·Rne−i∆k·(τi−Rn)⟨φiα(r′)|e−i∆k·r′ |φjβ(r′ + τi − τj − Rn)⟩, (9)

The exponential function in Eq. (9) can be approximated by

e−i∆k·r′ ≈ 1 − i∆k · r′. (10)

Thus, Eq. (9) becomes

⟨u(k)
σµ |u(k+∆k)

σν ⟩ =
∑

n

∑

iα,jβ

c(k)∗
σµ,iαc(k+∆k)

σν,jβ eik·Rne−i∆k·(τi−Rn) ×

{
⟨φiα(r′)|φjβ(r′ + τi − τj − Rn)⟩ − i∆k · ⟨φiα(r′)|r′|φjβ(r′ + τi − τj − Rn)⟩

}
, (11)

where the overlap integral is evaluated in momentum space, and the expectation value for the position
operator is evaluated using the same real space mesh as for the solution of Poisson’s equation in
OpenMX.
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, (11)

where the overlap integral is evaluated in momentum space, and the expectation value for the position
operator is evaluated using the same real space mesh as for the solution of Poisson’s equation in
OpenMX.
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Electric polarization and water 
dipole moment in ferroelectric ice

First-principles study of spontaneous polarisation and water dipole moment
in ferroelectric ice XI
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Using density functional calculations, spontaneous polarisation of proton-ordered ferroelectric ice XI phase is calculated for
the first time. Spontaneous polarisation along the c-axis of orthorhombic Cmc21 structure is calculated to be 21mC=cm2,
which corresponds to water dipole moment 3.3D. We have performed systematic calculation of the water dipole moment in
proton-ordered ice without ambiguity.

Keywords: water molecule; ice; density functional theory; electric polarisation; electric dipole moment, electronic
structure

1. Introduction

Ice, the crystalline phases of water, has a rich pressure–
temperature phase diagram [1]. Among many phases of
ice, an ordinary ice is classified in the ice Ih phase, which
is formed when liquid water is cooled below 273K at
standard atmospheric pressure. The crystal structure of ice
Ih has hexagonal symmetry, space group P63=mmc. The
proton in ice Ih is disordered, and it satisfies ice rules,
which states that each oxygen is covalently bonded to two
hydrogen atoms, and every water molecule is hydrogen
bonded to exactly four nearest-neighbour water molecules.
The ice Ih doped with KOH shows first-order phase
transition at 72K to low-temperature proton-ordered phase
of ice XI [2–4]. Ice XI has orthorhombic symmetry, space
group Cmc21 without space inversion symmetry. The
crystal structure becomes polar in ice XI and ferroelectric
phase in which electric dipoles are ordered with net
electric polarisation, while ice Ih is the paraelectric phase
in which electric dipoles are disordered without net
electric polarisation. Though the spontaneous polarisation
is one of the most important physical properties which
characterises ferroelectricity, the magnitude of spon-
taneous polarisation in ice XI has not been reported so far.

Water molecular dipole moment in condensed phases
is different from its isolated one. Batista et al. [5] have
performed first-principles calculation of water dipole
moment of ice Ih phase using space partition methods and
obtained the water dipole moment between the value of 2.8
and 3.2D, which depends on the way of space partition. It
is important to evaluate water molecular dipole moment in
crystal for understanding the origin of the spontaneous

polarisation. Moreover, the electric dipole moment of the
water molecule is a basic amount which determines
the dielectric characteristic of the polarity solvent. In the
previous first-principles calculation of water dipole
moment in the liquid phase, it is estimated to be about
3D in contrast with often assumed value 2.6 D [6].

The purpose of this study is to explore the spontaneous
polarisation of the ferroelectric ice XI from first principles.
In order to clarify the origin of spontaneous polarisation,
we have performed systematic calculation of spontaneous
polarisation and water dipole moment with changing
molecular distance covering from the gas phase to the
condensed phases.

2. Methods

Using the OPENMX code [7], we perform first-principles
electronic structure calculations based on the density
functional theory within the generalised gradient approxi-
mation [8]. The norm-conserving pseudopotential method
[9] is used. We use the linear combination of multiple
pseudo-atomic orbitals generated by a confinement scheme
[10,11]. The partial core correction [12] is considered for
oxygen atom. The electric dipole moment for bulk system is
calculated by the Berry phase method [13]. The method
allows one to compute a change in electric polarisation of
periodic system between two different states from the
phases of Bloch wave function. The k-space integration is
achieved with (8, 8, 8) k-point mesh for orthorhombic
reciprocal unit lattice vectors (a*, b*, c*) in self-consistent
field calculations.
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Problem:	definition	of	dipole	moment	in			
periodic	system	
•R. Martin (1974)
•Knowledge of the 
charge density in a 
unitcell is not 
sufficient to determine
the polarization.

P = Ω−1
P r( )d

3

cell
∫ r ∇⋅P r( ) = −n r( )

P = Ω−1
rn r( )d

3

cell∫ r +Ω−1
r P r( ) ⋅ dS[ ]

surface∫

E.R.	Batista,	S.S.	Xantheas,	H.	Jonsson (J.	Chem.	Phys.	111,	6011(1999))



E.R.	Batista,	S.S.	Xantheas,	H.	Jonsson
(J.	Chem.	Phys.	111,	6011(1999))

Charge density partition

multipole moments are to slight changes in the partitioning
of the charge density, we devised two other spatial partition-
ing schemes.

!ii" Voronoi I !V-I": The charge density is divided into
Voronoi cells using the center of charge on each molecule as
the center of the Voronoi cell. The charge closest to the
center of ionic charge of a given molecule is assigned to that
particular molecule. The molecule is then described by only
one point, namely the center of charge. Therefore no infor-
mation regarding the geometry and orientation of the mol-
ecule is used in this scheme.

!iii" Voronoi II !V-II": The charge density is divided into
Voronoi cells taking the position of individual atoms into
account. If the hydrogen atoms are treated on an equal foot-
ing as the oxygen atoms, then the Voronoi construction di-
vides the space near a hydrogen bond midway between the
hydrogen and oxygen atoms. The region associated with a
hydrogen atom then cuts significantly into the charge density
that is centered at oxygen atoms in neighboring molecules.
We, therefore, have chosen to shift the Voronoi center asso-
ciated with the hydrogen atoms along the O–H bonds toward
the oxygen to make it lie closer to the minimum of the elec-
tron density. By inspection of contour plots of the charge
density, we chose to displace the Voronoi centers for the
hydrogen atoms by 60% from the hydrogen atom nucleus
toward the oxygen nucleus in the molecule. The Voronoi
cells in both schemes turn out to be very nearly charge neu-
tral, to within 0.01 electronic charge.

Figure 1 shows a contour plot of the charge density of
the pentamer in the plane of the cluster as well as Voronoi I

and Voronoi II dividing surfaces. In each of the three previ-
ously described spatial decomposition methods the volume
associated with a water molecule is the volume correspond-
ing to each of the two hydrogen atoms plus the volume cor-
responding to the oxygen atom. Similar contour plots are
obtained for the other clusters.

!iv" Molecular Proportion Partitioning Method !MPP":
The electronic charge density of the cluster at any point in
space is partitioned among the individual molecules in pro-
portion to the electronic charge density of the isolated mol-
ecules at that point.

The results for the multipoles obtained with the above
four schemes are compared with the ones obtained from an
induction model which is described in detail in Ref. 21.
Briefly, every water molecule is represented in the induction
model as a point dipole, quadrupole, octopole and hexadeca-
pole moment tensor placed at the center of mass of the
molecule.44 The electric field at a molecule due to its neigh-
bors induces both a dipole and a quadrupole moment. We
used the experimentally measured values for the dipole and
quadrupole moments, the MP2/aug-cc-pVQZ values for the
octopole and hexadecapole moments, the experimentally
measured molecular dipole polarizability, # i j ,45 and the re-
sults of previous ab initio calculations for the dipole-
quadrupole, Ai , jk , quadrupole-quadrupole polarizability,
Ci j ,kl ,46 and the first hyperpolarizability, $ i jk .47 The values
of the moments and polarizabilities used here are the ones
shown in Tables I and II of Ref. 21.

IV. RESULTS AND DISCUSSION
The variation of the average dipole moment with cluster

size is shown in Fig. 2. The different partition schemes of the
charge density clearly lead to very different molecular dipole
moments. The average dipole moment of a molecule in ice Ih
ranges from 2.3 D for the Voronoi II scheme to 3.1 D for the
Voronoi I scheme. The AIM scheme gives intermediate re-
sults. Due to proton disorder, the dipole moment varies
slightly from one molecule to another in a given ice Ih con-
figuration !the standard deviation is 0.04 Debye". The differ-
ence in the dipole moments deduced from the MP2 and DFT
calculations differ by less than 0.1 D for all the clusters. The
results of the MPP scheme were also intermediate between
the two Voronoi schemes, 2.05 D for the average molecular
dipole moment in the dimer and 2.19 D in the pentamer. The
induction model gives larger dipole moments than any of the
schemes used to partition the charge density obtained from
first principles calculations for larger clusters and ice Ih.

The large sensitivity of the calculated molecular mo-
ments to details of the partitioning scheme can also be seen
from a particularly simple scheme, namely the assignment of
a spherical region to each water molecule. Choosing the ra-
dius of the sphere to give charge neutrality in each case, the
molecular dipole moment calculated for a water molecule in
ice differs by 0.5 D depending on whether the center of the
sphere is placed at the center of mass or center of charge of
the water molecule. The two centers are only 0.08 Å apart.

Despite the large range of values obtained for the mo-
lecular dipole moment depending on which scheme is used,
it is, nevertheless, apparent that the dipole moment of a wa-

FIG. 1. Contour plot of the charge density of the water pentamer in the
plane of the cluster. The figure displays the charge density partitioned ac-
cording to the Voronoi I !dotted line" and Voronoi II !solid line" schemes
!see text". In the Voronoi I scheme, the Voronoi cell is constructed around
one center per molecule, placed at the center of nuclear charge. In Voronoi
II, the Voronoi cells are around three ‘‘atomic’’ centers per molecule: one at
the oxygen atom and the other two !shown with crosses" on the O–H bonds,
at 40% of the displacement from the oxygen atom to the hydrogen nucleus.
Although both surfaces are very similar, the latter passes closer through the
minimum of the charge density between the molecules.

6013J. Chem. Phys., Vol. 111, No. 13, 1 October 1999 Water in clusters and ice Ih
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Charge distribution in ferroelectric ice

Figure 1 shows the crystal structure of ice XI phase. As
mentioned above, the proton-ordered structure of ice XI
phase has orthorhombic symmetry [4], space group Cmc21
with the same lattice as the proton-disordered ice Ih phase
which has hexagonal symmetry, space group P63=mmc. In
the calculation of electric spontaneous polarisation, we use
experimental lattice constant and internal parameters [4].
The lattice constants are a ¼ 4.5019 Å, b ¼ 7.7978 Å
and c ¼ 7.3280 Å.

3. Results and discussion

Figure 2 shows the calculated charge density contour
map of ice XI phase. Significant charge density 0.01e-
0.1 e/bohr3 can be seen on the hydrogen bonds at the

intermolecular region. Therefore, the calculation of the
water dipole moment from charge density with space
partition methods has ambiguity. The Berry phase method
is indispensable for calculating water dipole moment and
spontaneous polarisation.

Figure 3 shows the calculated (a) band structure and
(b) total density of states of ice XI. The band structure of
ferroelectric ice XI phase is plotted along the high
symmetry axes of the Brillouin zone. The high symmetry
points G, Z, U, X and Y indicate (0, 0, 0), ð0; 0;p=cÞ,
ðp=a; 0;p=cÞ, ðp=a; 0; 0Þ and ð0;p=b; 0Þ in terms of
ðkx; ky; kzÞ, respectively. As there are eight molecules in the
unit cell, the valence electrons are totally 64 and the
occupied bands are 32 spin degenerated bands. The
valence band top is at 20.3 eV at G points, and there is a
direct bandgap of about 6 eV. The bands between 24 and
0 eV with dispersion for each k-direction show the
delocalised nature of electronic wave functions expressed
by the Bloch wave functions.

Calculated water dipole moment in an isolated
molecule is 1.9 D in the present calculation which is
in good agreement with experimental value [14]. If there
is no interaction between the water molecules, the

Figure 1. Perspective views of crystal structure of ice XI phase from (a) [100], (b) [010] and (c) [001] directions. Large and small
spheres represent O and H atoms, respectively.
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Figure 3. Electronic structure of ice XI phase. Calculated
(a) band structure and (b) total density of states. The valence band
top is taken at the origin of the energy.

Figure 2. The charge density of ice XI phase viewed from
a-axis perpendicular to the polarisation direction. Contours are
drawn on a logarithmic scale (from 1.0e-4 to 1.0 e/bohr3).
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Water dipole moment in hypothetical crystal

spontaneous polarisation of ice is simply the sum of
isolated water dipole moment in the unit cell. Thus, the
spontaneous polarisation along orthorhombic c-axis
would be 15mC/cm2 which corresponds to water dipole
moment 1.9D. By using the Berry phase method, the
spontaneous polarisation is calculated to be 21mC/cm2.
This value of polarisation corresponds to water dipole
moment 3.3D. We found that in the ice XI phase, the
value of dipole moment is 74% higher than in the gas
phase. It is worthwhile to comment that the value of
spontaneous polarisation is larger than that of typical
order–disorder type ferroelectrics such as 12mC/cm2 in
NaNO2 [15].

In order to understand the enhancement of water dipole
moment in ice, we assume simple crystal structure of
model ice for calculating molecular distance dependence
of water dipole moment. Figure 4 shows the water dipole
moment of model ice with a perspective view of the
structure. The water dipole moment changes with
oxygen–oxygen distance ROO. The model ice structure
has a cubic unit cell, and the water molecules are located at
the centre and the corner of the unit cell. The crystal
structure has tetrahedral coordination of water molecules
which is the same as the ice XI phase. If we change unit the
cell volume and keep water molecules at the centre and
the corner of cubic box, we can calculate spontaneous
polarisation and water dipole moment with different
molecular distance, which corresponds to the gas phase
and the condensed phase. In ice XI phase, the distance
between the oxygen atoms is 2.74 Å, where evaluated
water dipole moment in the model ice is 3.3D. This value
is in good agreement with the calculated value for ice XI
phase. Then, the water dipole moment in the model ice
structure can explain different dielectric properties for
different intermolecular distances. As seen in Figure 4, the
water dipole moment is enhanced from 2.0 D at

ROO ¼ 5.4 Å to 4.0D at ROO ¼ 2.4 Å. The shorter the
ROO becomes, the larger the water dipole moment is
realised; a steep increase is found around ROO ¼ 3.5 Å,
owing to the condensed phase effect, i.e. hydrogen-bond
mediated covalency [16]. For the liquid water, first peaks
in oxygen–oxygen distribution function have theoretically
been estimated to be between 2.69 and 2.76 Å [17,18].
The corresponding dipole moment in Figure 4 is found to
be 3.3 D, although spatial disorder in the liquid water is not
accounted for. The value is slightly larger than that of the
calculated value for liquid water phase by the Wannier
function approach [6]. This difference may come from
ferroelectric order of water molecules in this study, while
water molecules are disordered in the liquid phase.

4. Summary

By using density functional calculations, spontaneous
polarisation of proton-ordered ice XI phase is calculated
for the first time. We have evaluated the explicit water
dipole moment in ice without ambiguity arising from
space partition. The dipole moment for the model ice
structure which is similar to ice XI phase can describe the
enhancement of the electric dipole moment in the
condensed phase of water.
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Figure 4. Water dipole moment of model ice with a perspective
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versus oxygen–oxygen distance ROO. The lines are a guide to the
eye.
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