First-principles description of correlated electron materials: LDA+U and beyond

Purpose:

- ✓ Understanding the limitation of standard local approximations to describe correlated electron systems
- ✓ Understanding the basic idea of LDA+U and other related methods
- ✓ Understanding recent progress on LDA+U functionals

Myung Joon Han (KAIST, Physics)

PART 1

Contents:

- ✓ Failure of LDA and similar approximations to describe correlated electron physics
- ✓ Basics of LDA+U : Idea, technical and physical issues...
- ✓ DMFT (dynamical mean field theory) and others

Suggested Reading:

- R. G. Parr and W. Yang, "Density functional theory of atoms and molecules (OUP 1989)"
- R. M. Martin, "Electronic structure: Basic theory and practical methods (CUP 2004)"

V. I. Anisimov et al., "Strong Coulomb correlations in electronic structure calculations: Beyond the local density approximation (Gordon & Breach 2000)"

Georges et al., "dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions" Rev. Mod. Phys. (1996)

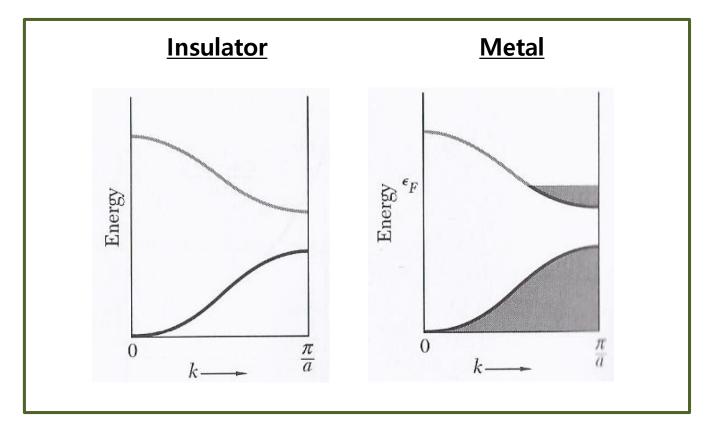
Kotliar et al., "Electronic structure calculations with dynamical mean-field theory" Rev. Mod. Phys. (2006)

Local Density Approximation

- 'Local' approximation based on the solution of 'homogeneous' electron gas
- Get in trouble whenever these approximations become invalidated:
 For examples,
 - (Weak) van der Waals interaction originating from the fluctuating dipole moments

(Strong) On-site Coulomb repulsion which is originated from the atomic nature of localized d- or f- electrons in solids

Very Basic of Band Theory



Kittel, Introduction to Solid State Physics

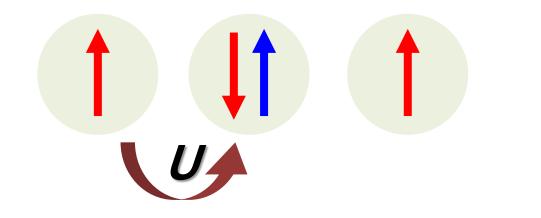
A material with partially-filled band(s) should be metallic

Insulator: Pauli and Mott

Pauli exclusion: band insulator

W. E. Pauli

Coulomb repulsion: Mott (-Hubbard) insulator

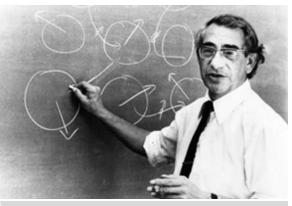


N. F. Mott

Localized Orbital and Hubbard Model

Hubbard Model (1964)

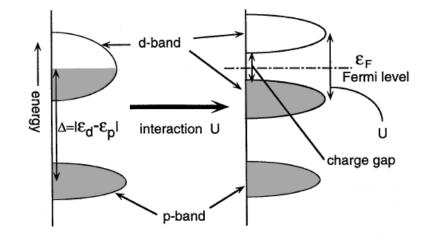
$$H = -\sum_{i,j,\sigma} t_{ij} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$



http://theor.jinr.ru/~kuzemsky/jhbio.html

'Hopping' term between the sites

On-site Coulomb repulsion in the correlated orbitals

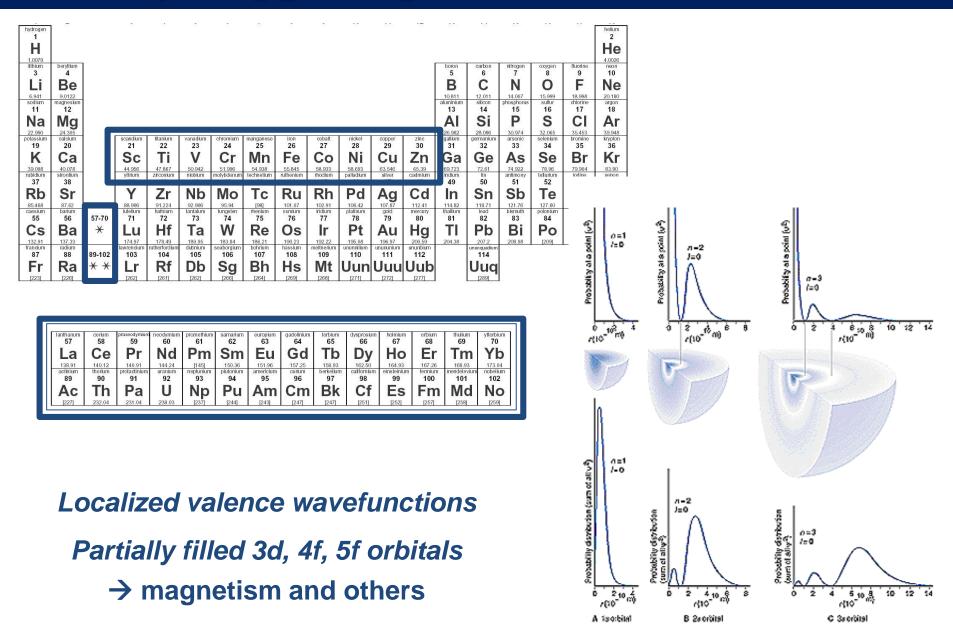


Additional electron occupation requires the energy cost :

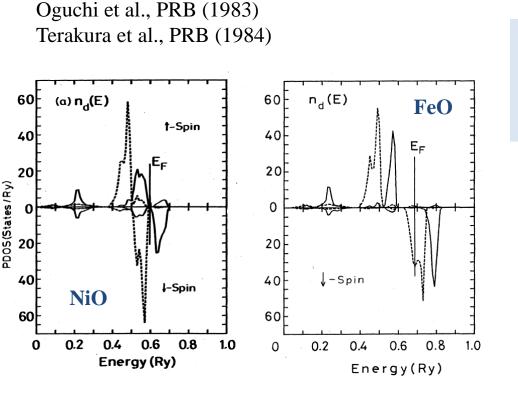
 $U = E(d^{n+1}) + E(d^{n-1}) - 2E(d^n)$

Imada, Fujimori, Tokura, Rev. Mod. Phys. (1998)

Actually Happening Quite Often



Applying LDA to 'Mott' Insulators



 \checkmark Too small or zero band gap

- ✓ Magnetic moment underestimated
- ✓ Too large exchange coupling (Tc)

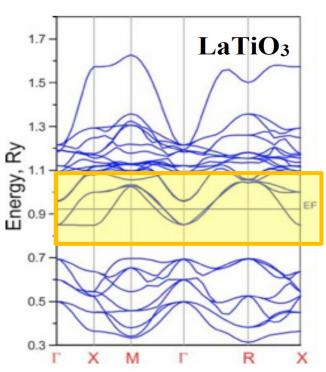


TABLE III. Experimental and theoretical exchange parameters (in K) of the first and the second neighbors.

MnO		MnS		N		
J_1	J_2	J_1	J_2	${J}_1$	J_2	Reference
14.4	-7.0	- 8.0	-9.0	- 50	- 85	22
-9.0	-10.4					25
214				16	-222	26
- 10.0	-11.0					23
-28	-28					24
- 30.3	-29.8	10	-27	61	-1230	present paper

Combining LDA with Hubbard Model

PHYSICAL REVIEW B

VOLUME 44, NUMBER 3

15 JULY 1991-I

Band theory and Mott insulators: Hubbard U instead of Stoner I

Vladimir I. Anisimov,* Jan Zaanen,[†] and Ole K. Andersen

Max-Planck-Institut für Festkörperforschung, D-7000 Stuttgart 80, Heisenbergstrasse 1, Federal Republic of Germany (Received 4 September 1990; revised manuscript received 5 March 1991)

We propose a form for the exchange-correlation potential in local-density band theory, appropriate for Mott insulators. The idea is to use the "constrained-local-density-approximation" Hubbard parameter U as the quantity relating the single-particle potentials to the magnetic- (and orbital-) order parameters. Our energy functional is that of the local-density approximation plus the mean-field approximation to the remaining part of the U term. We argue that such a method should make sense, if one accepts the Hubbard model and the success of constrained-local-density-approximation parameter calculations. Using this *ab initio* scheme, we find that all late-3*d*-transition-metal monoxides, as well as the parent compounds of the high- T_c compounds, are large-gap magnetic insulators of the charge-transfer type. Further, the method predicts that LiNiO₂ is a low-spin ferromagnet and NiS a local-moment *p*-type metal. The present version of the scheme fails for the early-3*d*-transition-metal monoxides and for the late 3*d* transition metals.

Basic idea: Introduce Hubbard-like term into the energy functional (and subtract the equivalent LDA term to avoid the double counting)

$$E_{LDA+U} = E_{LDA} + E_U - E_{dc}$$

where
$$E_U = rac{1}{2} \sum_{ilm\sigma} U n^\sigma_{ilm} n^{\sigma'}_{ilm'}$$

LDA+U Functional

The (original) form of energy functional (Anisimov et al. 1991)

$$\begin{split} E = E^{\text{LDA}} + \frac{1}{2} \sum_{\substack{m,m',\sigma \\ m,m',\sigma \\ (m \neq m')}} U(n_{im\sigma} - n^0)(n_{im'\sigma} - n^0) \\ + \frac{1}{2} \sum_{\substack{m,m',\sigma \\ (m \neq m')}} (U - J)(n_{im\sigma} - n^0)(n_{im'\sigma} - n^0) \; . \end{split}$$

i : site index (orbitals)

n⁰ : average d-orbital occupation (no double counting correction)

J: Hund coupling constant

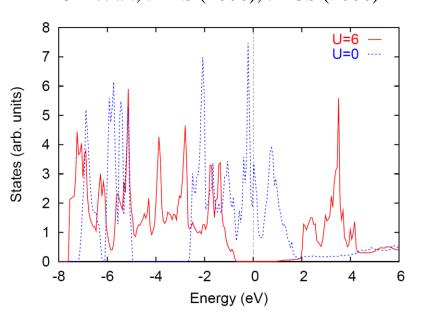
Orbital-dependent potential

$$\begin{split} V_{m\sigma} &= U \sum_{m'} (n_{m'-\sigma} - n^0) \\ &+ (U - J) \sum_{m'(\neq m)} (n_{m'\sigma} - n^0) + V^{\text{LDA}} \end{split}$$

	Band	gap	(in	eV)	:
--	------	-----	-----	-----	---

\bar{U} (eV)	MnO	FeO	CoO	NiO
0	0.04	0.00	0.00	0.36
2	1.68	0.76	1.20	1.56
4	2.12	1.96	2.20	2.53
6	4.21	2.77	3.01	3.89
Calc. (LSDA)	0.8 ^a	0.0 ^a	0.0^{a}	0.2 ^a
Calc. $(LDA + U)$	3.5 ^b	3.2 ^c	3.2 ^d	3.1 ^e
Expt.	3.6-3.8 ^f	2.4 ^g	2.4 ^h	4.0 ⁱ , 4.3 ^j

Wurtzite-structured CoO : *MJH* et al., JKPS (2006); JACS (2006)



• Magnetic moment of NiO (in µ_B) :

	Mulliken			Voronoi			
\bar{U} (eV)	Full	Dual	On-site	Full	Dual	On-site	Other group results
0	1.30	1.30	1.30	1.28	1.28	1.28	$1.0 \ (\bar{U}=0.0)^{a}$
2	1.48	1.54	1.59	1.46	1.51	1.55	
4	1.59	1.66	1.71	1.55	1.61	1.66	
6	1.66	1.74	1.79	1.62	1.69	1.72	$1.59 \ (\bar{U}=6.9)^{b}$
Expt.							1.77 ^c , 1.64 ^d , 1.90 ^e

MJH, Ozaki and Yu PRB (2006)

Further Issues

✓ Rotational invariance and several different functional forms

$$E^{U}[\{n\}] = \frac{1}{2} \sum_{\{m\},\sigma} \{ \langle m, m'' | V_{ee} | m', m''' \rangle n^{\sigma}_{mm'} n^{-\sigma}_{m''m'''} + (\langle m, m'' | V_{ee} | m', m''' \rangle - \langle m, m'' | V_{ee} | m''', m' \rangle) n^{\sigma}_{mm'} n^{\sigma}_{m''m'''} \},$$

(So-called) fully localized limit: Liechtenstein et al. PRB (1995)

 $E_{\rm dc}[\{n^{\sigma}\}] = \frac{1}{2}Un(n-1) - \frac{1}{2}J[n^{\uparrow}(n^{\uparrow}-1) + n^{\downarrow}(n^{\downarrow}-1)]$

(So-called) around the mean field limit: Czyzyk et al. PRB (1994)

$$E^{\text{LSDA}+\text{AMF}} = E^{\text{LSDA}} + \frac{1}{2} \sum_{m,m',\sigma} U_{mm'}(n_{m\sigma} - n_{\sigma}^{0})$$

$$\times (n_{m'-\sigma} - n_{-\sigma}^{0})$$

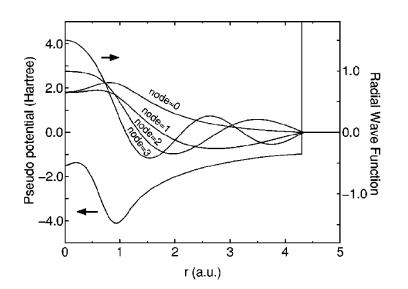
$$+ \frac{1}{2} \sum_{m,m',m\neq m',\sigma} (U_{mm'} - J_{mm'})(n_{m\sigma} - n_{\sigma}^{0})$$

$$\times (n_{m'\sigma} - n_{\sigma}^{0}) . \qquad (3)$$

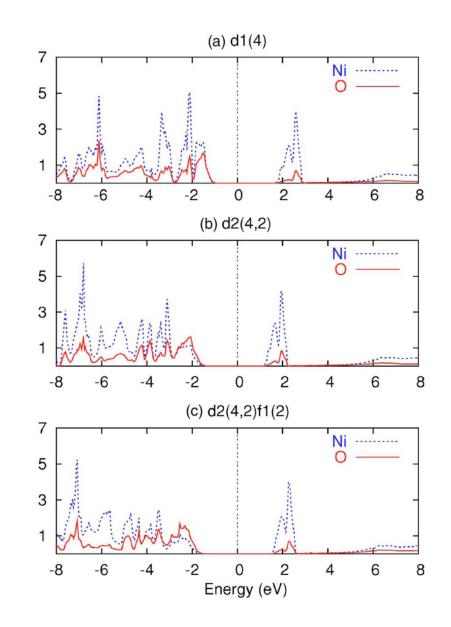
LDA+U based on LCPAO (1)

 Numerically generated (pseudo-) atomic orbital basis set:

Non-orthogonal multiple d-/forbitals with arbitrarily-chosen cutoff radii



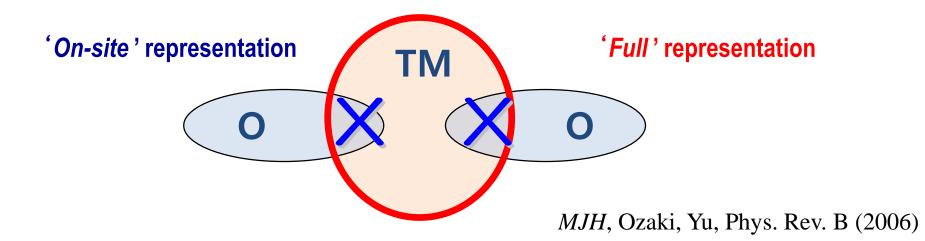
T. Ozaki, Phys. Rev. B (2003) *MJH*, Ozaki, Yu, Phys. Rev. B (2006)



LDA+U based on LCPAO (2)

✓ Non-orthogonality and no guarantee for the sum rule

See, for example, Pickett et al. PRB (1998)



Proposed 'dual' representation:

Sum rule satisfied:

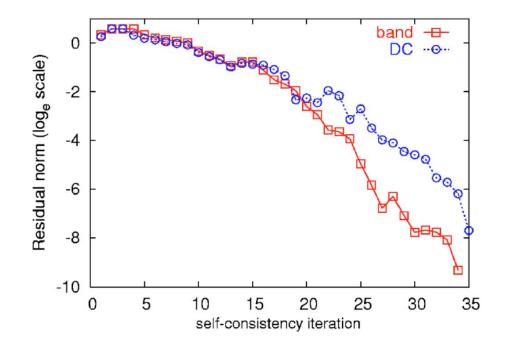
$$\hat{\rho}_{smm'}^{\sigma} = \frac{1}{2} (|s\tilde{m}\sigma\rangle\langle sm'\sigma| + |sm\sigma\rangle\langle s\tilde{m'\sigma}|)$$
$$\sum_{\sigma} Tr(n^{\sigma}) = \sum_{\sigma} \frac{1}{2} [Tr(S\rho^{\sigma}) + Tr(\rho^{\sigma}S)] = N_{ele}$$

where n^{σ} is the density matrix.

LDA+U based on LCPAO (3)

- ✓ LMTO: Anisimov et al. Phys. Rev. B (1991)
- ✓ FLAPW: Shick et al. Phys. Rev. B (1999)
- ✓ PAW: Bengone et al. Phys. Rev. B (2000)
- ✓ PP-PW: Sawada et al., (1997); Cococcioni et al., (2005)

✓ LCPAO and O(N) LDA+U: Large-scale correlated electron systems



MJH, Ozaki, Yu, Phys. Rev. B (2006)

Limitations

✓ How to determine the U and J values?

No fully satisfactory way to determine the key parameters

c-LDA (e.g., Hybersen, Andersen, Anisimov et al 1980s, Cococcioni et al. 2005), c-RPA (Aryasetiawan, et al. 2004, 2006, 2008, Sasioglu 2011), m-RPA (Sakakibara, *MJH* et al. 2016)

✓ How to define the double-counting energy functional?

Fully-localized limit, Around-the-mean-field form, Simplified rotationally invariant from, etc

See, Anisimov et al. (1991); Czyzyk and Sawatzky (1994); Dudarev et al. (1998)

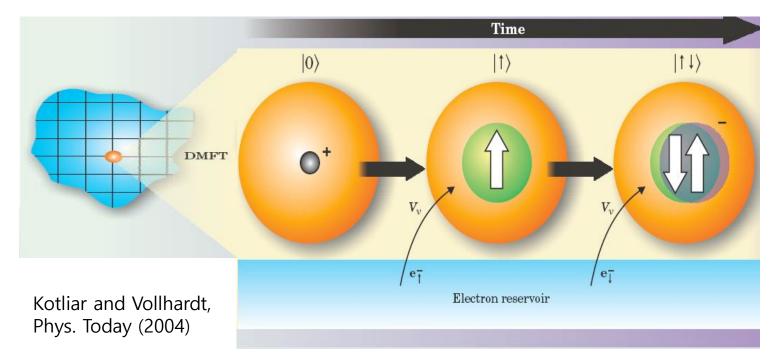
✓ It is a static Hartree-Fock method

The correlation effect beyond this static limit cannot be captured

→ Dynamical mean-field theory

Dynamical Correlation and DMFT

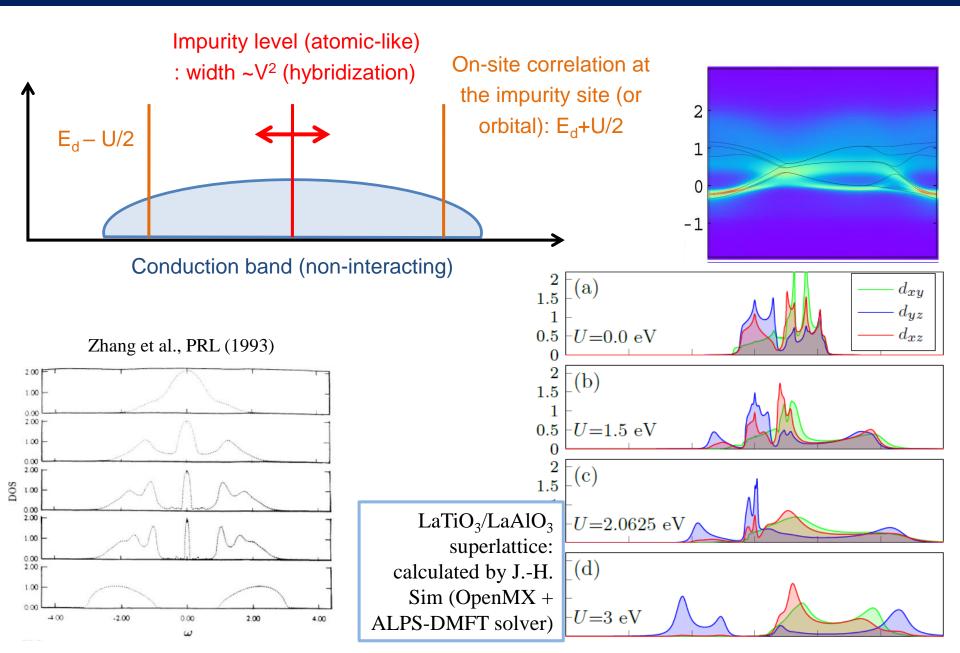
✓ Dynamical mean-field theory



Mapping 'Hubbard Hamilnoian' into 'Anderson Impurity Hamiltonian' plus 'self-consistent equation'

Georges and Kotliar Phys. Rev. B (1992) Georges et al., Rev. Mod. Phys.(1996); Kotliar et al., Rev. Mod. Phys.(2006);

DMFT Result



No on-site correlation (homogeneous electron gas)

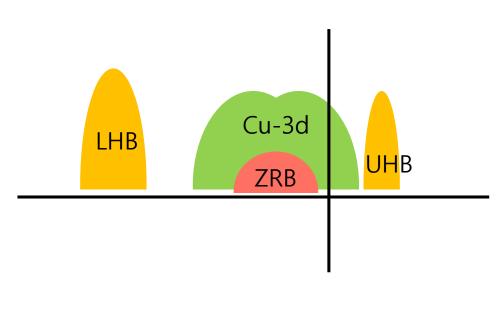
<u>LDA+U</u>

Hubbard-U correlation Static approximation

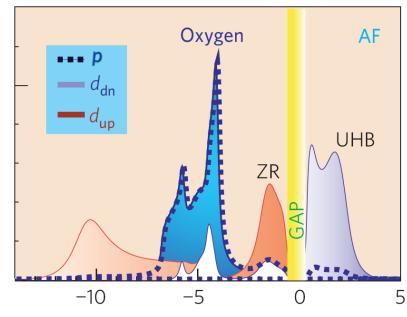
LDA+DMFT

Hubbard-U correlation Dynamic correlation

Application to high-T_c cuprate



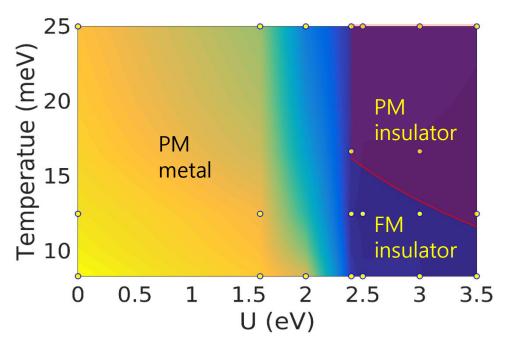
Weber et al., Nature Phys. (2010)

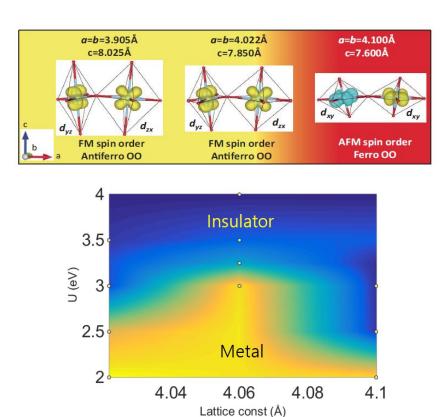


LDA+U and DMFT

- ✓ LDA+U is the static (Hartree) approximation of DMFT :
 - Temperature dependency
 - Electronic property near the phase boundary
 - Paramagnetic insulating and correlated metallic phase

LaTiO₃/LaAlO₃ superlattice: calculated by J.-H. Sim (OpenMX + ALPS-DMFT solver)



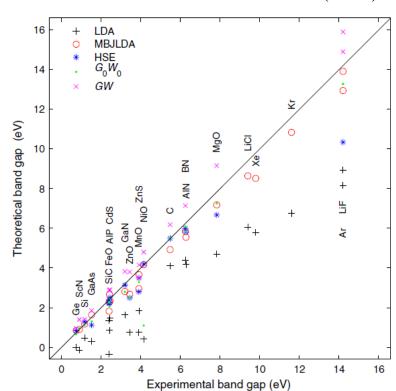


Other Methods

- ✓ Hybrid functionals, self-interaction correction, etc
 - Inclusion of atomic nature can always be helpful
 - 'Controllability' versus 'parameter-free'-ness
 - Hidden parameters (or factors)
 - Computation cost (\rightarrow relaxation etc)

✓ (Self-consistent) GW

- Parameter-free way to include the welldefined self energy
- No way to calculate total energy, force,...etc
- Fermi liquid limit



Tran and Blaha, PRL (2009)

Purpose:

✓ Introducing recent progress on understanding LDA+U functionals

Contents:

- ✓ LDA+U functionals reformulated
- ✓ Comparison of LDA+U with LSDA+U
- ✓ Case studies and Perspective

Suggested Reading:

- S. Ryee and MJH, Sci. Rep. (2018)
- S. Ryee and MJH, J. Phys.: Condens. Matter. (2018)
- S. W. Jang et al., arXiv:1803.00213

J. Chen et al., Phys. Rev. B (2015) H. Park et al., Phys. Rev. B (2015) H. Chen et al., Phys. Rev. B (2016)

DFT+U (or +DMFT) Formalism: Basic Idea

$E^{\mathrm{DFT}+\mathrm{U}}[\rho^{\sigma},\mathbf{n}^{\sigma}] = E^{\mathrm{DFT}}[\rho^{\sigma}] + E^{\mathrm{int}}[\mathbf{n}^{\sigma}] - E^{\mathrm{dc}}$

where $E^{int}[\mathbf{n}^{\sigma}]$: Hubbard-type on-site interaction term

 E^{dc} : (conceptually) the same interaction energy in LDA/GGA

DFT+U (or +DMFT) Formalism: The Issue (1)

 $E^{\mathrm{DFT+U}}[\rho^{\sigma}, \mathbf{n}^{\sigma}] = E^{\mathrm{DFT}}[\rho^{\sigma}] + E^{\mathrm{int}}[\mathbf{n}^{\sigma}] - E^{\mathrm{dc}}$

where $E^{int}[\mathbf{n}^{\sigma}]$: Hubbard-type on-site interaction term

 E^{dc} : (conceptually) the same interaction energy in LDA/GGA

- *E*^{int}: Expression, basis-set dependence, rotational invariance,... etc
- *E*^{dc}: No well-established prescription

→ FLL (fully localized limit) vs AMF (around the mean field)

Anisimov, Solovyev *et al.*, PRB (1993) Czyzyk & Sawatzky, PRB (1994) Liechtenstein *et al.*, PRB (1995) Petukhov, Mazin *et al.*, PRB (2003) Pourovskii, Amadon *et al.*, PRB (2007) Amadon, Lechermann *et al.*, PRB (2008) Karolak et al., J. Electron Spectrosc. Relat. Phenom. (2010) X. Wang, *MJH et al.*, PRB (2012) H. Park, Millis, Marianetii, PRB (2014) Haule, PRL (2015)

. . .

DFT+U (or +DMFT) Formalism: The Issue (2)

$$E^{\mathrm{DFT+U}}[\rho^{\sigma}, \mathbf{n}^{\sigma}] = E^{\mathrm{DFT}}[\rho^{\sigma}] + E^{\mathrm{int}}[\mathbf{n}^{\sigma}] - E^{\mathrm{dec}}$$

where $E^{int}[\mathbf{n}^{\sigma}]$: Hubbard-type on-site interaction term

 E^{dc} : (conceptually) the same interaction energy in LDA/GGA

- *E*^{int}: Expression, basis-set dependence, rotational invariance,... etc
- *E*^{dc}: No well-established prescription
 - → FLL (fully localized limit) vs AMF (around the mean field)

• **E**^{DFT}: charge-only-density XC (LDA) or spin-density XC (LSDA) ??

CDFT+U

Anisimov et al., PRB (1991) Anisimov et al., PRB (1993) Solovyev et al., PRB (1994)

SDFT+U

Czyzyk et al., PRB (1994) Liechtenstein et al., PRB (1995) Dudarev et al., PRB (1998)

Recent Case Studies

No systematic formal analysis on this fundamental issue (Some case studies and internal agreement in DMFT community)

PHYSICAL REVIEW B 91, 241111(R) (2015)

Density functional plus dynamical mean-field theory of the spin-crossover molecule Fe(phen)₂(NCS)₂

Jia Chen,^{1,2} Andrew J. Millis,² and Chris A. Marianetti¹

¹Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA ²Department of Physics, Columbia University, New York, New York 10027, USA

(Rec

We study i mean-field t electronic stu spectra, and i energy differ susceptibility U calculatic Additionally methodologi exchange int

Density functional versus spin-density functional and the choice of correlated subspace in multivariable effective action theories of electronic structure

Hyowon Park,^{1,2,*} Andrew J. Millis,² and Chris A. Marianetti¹ ¹Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, New York 10027, USA ²Department of Physics, Columbia University, New York, New York 10027, USA

Modern extension functional theory plu density) for the densi in the context of the " correlated orbitals ar spin-density-depende of the correlated orb rare-earth nickelates can lead to large and definitions of the corr observed at large preof density functional

Spin-density functional theories and their +U and +J extensions: A comparative study of transition metals and transition metal oxides

Hanghui Chen^{1,2} and Andrew J. Millis¹

¹Department of Physics, Columbia University, New York, New York, 10027, USA ²Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, 10027, USA (Received 18 November 2015; published 26 January 2016)

Previous work on the physical content of exchange-correlation functionals that depend on both charge and spin densities is extended to elemental transition metals and a wider range of perovskite transition metal oxides. A comparison of spectra and magnetic moments calculated using charge-only and spin-dependent exchange-correlation functionals as well as their +U and +J extensions confirms previous conclusions that the spin-dependent part of the exchange-correlation functional provides an effective Hund's interaction acting on the transition metal d orbitals. For the local spin density approximation and spin-dependent generalized gradient approximation in the Perdew-Burke-Ernzerhof parametrization, the effective Hund's exchange implied by the spin dependence of the exchange correlation functional is found to be larger than 1 eV. The results indicate that at least as far as applications to transition metals and their oxides are concerned, +U, +J, and +dynamical-

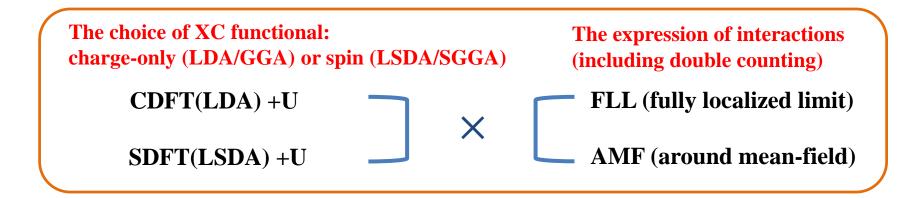
The Issue Formulated

Total energy; CDFT+U and SDFT+U

$$E^{\text{CDFT}+U} = T_s[\rho^{\sigma}] + \int d\mathbf{r} v_{\text{ext}}(\mathbf{r})\rho + E_{HXC}[\rho] + E^{\text{int}}[\mathbf{n}^{\sigma}] - E^{\text{dc}}[N]$$

$$E^{\text{SDFT}+U} = T_s[\rho^{\sigma}] + \int d\mathbf{r} v_{\text{ext}}(\mathbf{r})\rho + E_{HXC}[\rho^{\sigma}] + E^{\text{int}}[\mathbf{n}^{\sigma}] - E^{\text{dc}}[N^{\sigma}]$$
where $E^{\text{int}} = \frac{1}{2} \sum_{\{m_i\},\sigma,\sigma'} n_{m_1m_2}^{\sigma} \{ \langle m_1, m_3 | V_{ee} | m_2, m_4 \rangle - \langle m_1, m_3 | V_{ee} | m_4, m_2 \rangle \delta_{\sigma\sigma'} \} n_{m_3m_4}^{\sigma'}$
Coulomb interaction tensor using two input parameters: U and

Coulomb interaction tensor using two input parameters; U and J



Liechtenstein et al., PRB (1995) Dudarev et al., PRB (1998)

Anisimov et al., PRB (1991)

'FLL (fully localized limit)' Formalism

Total energy; CDFT+U and SDFT+U

$$E^{\text{CDFT}+U} = T_s[\rho^{\sigma}] + \int d\mathbf{r} v_{\text{ext}}(\mathbf{r})\rho + E_{HXC}[\rho] + E^{\text{int}}[\mathbf{n}^{\sigma}] - E^{\text{dc}}[N]$$
$$E^{\text{SDFT}+U} = T_s[\rho^{\sigma}] + \int d\mathbf{r} v_{\text{ext}}(\mathbf{r})\rho + E_{HXC}[\rho^{\sigma}] + E^{\text{int}}[\mathbf{n}^{\sigma}] - E^{\text{dc}}[N^{\sigma}]$$
Potential

 $V_{m_1m_2}^{U,\sigma} = \delta E^U / \delta n_{m_1m_2}^{\sigma} = \delta (E^{\text{int}} - E^{\text{dc}}) / \delta n_{m_1m_2}^{\sigma} = V_{m_1m_2}^{\text{int},\sigma} - V_{m_1m_2}^{\text{dc},\sigma}$

FLL formulations: cFLL (CDFT+U version) and sFLL (SDFT+U version)

$$E^{\text{int}} = \frac{1}{2} \sum_{\{m_i\},\sigma,\sigma'} n_{m_1}^{\sigma} \{ \langle m_1, m_2 | V_{ee} | m_1, m_2 \rangle - \langle m_1, m_2 | V_{ee} | m_2, m_1 \rangle \delta_{\sigma\sigma'} \} n_{m_2}^{\sigma'} \\ \text{direct interaction} \quad \text{exchange interaction} \\ \text{cFLL} \quad \text{sFLL} \\ E^{\text{dc}}_{\text{cFLL}} = \frac{1}{2} UN(N-1) - J \frac{N}{2} \left(\frac{N}{2} - 1 \right) \\ V^{\text{dc},\sigma}_{\text{cFLL},m_1m_2} = \left\{ U \left(N - \frac{1}{2} \right) - J \left(\frac{N}{2} - \frac{1}{2} \right) \right\} \delta_{m_1m_2} \quad V^{\text{dc},\sigma}_{\text{sFLL},m_1m_2} = \left\{ U \left(N - \frac{1}{2} \right) - J \left(N^{\sigma} - \frac{1}{2} \right) \right\} \delta_{m_1m_2} \\ \end{array}$$

S. Ryee and MJH, Sci. Rep. (2018)

- ✓ sFLL double counting with $-\frac{1}{4}JM^2$: in competition with spin-density XC energy
- ✓ Double counting potential: cFLL (spin-independent) vs sFLL (spin-dependent)

'AMF (around mean-field)' Formalism

Total energy; CDFT+U and SDFT+U

$$E^{\text{CDFT}+U} = T_s[\rho^{\sigma}] + \int d\mathbf{r} v_{\text{ext}}(\mathbf{r})\rho + E_{HXC}[\rho] + E^{\text{int}}[\mathbf{n}^{\sigma}] - E^{\text{dc}}[N]$$
$$E^{\text{SDFT}+U} = T_s[\rho^{\sigma}] + \int d\mathbf{r} v_{\text{ext}}(\mathbf{r})\rho + E_{HXC}[\rho^{\sigma}] + E^{\text{int}}[\mathbf{n}^{\sigma}] - E^{\text{dc}}[N^{\sigma}]$$
Potential

S. Ryee and MJH, Sci. Rep. (2018)

$$V_{m_1m_2}^{U,\sigma} = \delta E^U / \delta n_{m_1m_2}^{\sigma} = \delta (E^{\text{int}} - E^{\text{dc}}) / \delta n_{m_1m_2}^{\sigma} = V_{m_1m_2}^{\text{int},\sigma} - V_{m_1m_2}^{\text{dc},\sigma}$$

• AMF formulations: cAMF (CDFT+U version) and sAMF (SDFT+U version)

$$E_{\text{AMF}}^{U} = E_{\text{AMF}}^{\text{int}} - E_{\text{AMF}}^{\text{dc}} = \frac{1}{2} \sum_{\{m_i\},\sigma,\sigma'} \widetilde{n}_{m_1m_2}^{\sigma} \frac{\langle m_1, m_3 | V_{ee} | m_2, m_4 \rangle}{\text{direct interaction}} - \frac{\langle m_1, m_3 | V_{ee} | m_4, m_2 \rangle \delta_{\sigma\sigma'} }{\text{exchange interaction}}$$

$$cAMF \qquad sAMF \\ \tilde{n}_{m_1m_2}^{\sigma} = n_{m_1m_2}^{\sigma} - \frac{1}{2(2l+1)} (N\delta_{m_1m_2}) \qquad \tilde{n}_{m_1m_2}^{\sigma} = n_{m_1m_2}^{\sigma} - \frac{1}{2(2l+1)} (N + \text{sgn}(\sigma)M)\delta_{m_1m_2}$$

 ✓ In cAMF/sAMF, the interaction is described by the fluctuation w.r.t. the average *charge/spin* occupation (double counting implicit).

Analysis (1): Energetics

✓ cFLL:
$$E^{U+XC} \equiv E^{int}[\mathbf{n}^{\sigma}] - \left[\frac{1}{2}UN(N-1) - J\frac{N}{2}\left(\frac{N}{2} - 1\right)\right]$$

✓ sFLL: $E^{U+XC} \equiv E^{int}[\mathbf{n}^{\sigma}] - \left[\frac{1}{2}UN(N-1) - \frac{J}{2}\sum_{\sigma}N^{\sigma}(N^{\sigma} - 1)\right] - \frac{IM^{2}}{4}$
SFLL: $E^{U+XC} \equiv E^{int}[\mathbf{n}^{\sigma}] - \left[\frac{1}{2}UN(N-1) - \frac{J}{2}\sum_{\sigma}N^{\sigma}(N^{\sigma} - 1)\right] - \frac{IM^{2}}{4}$
SFLL dc

- **Spin-polarization energy of LDA/GGA** is also present in SDFT+U (but not in CDFT+U)
 - Represented by **Stoner** *I* (in general material dependent) \checkmark (cf) In general, for real materials, $I_{SGGA} > I_{LSDA}$. See, for example, S. Ryee and MJH, Sci. Rep. (2017)

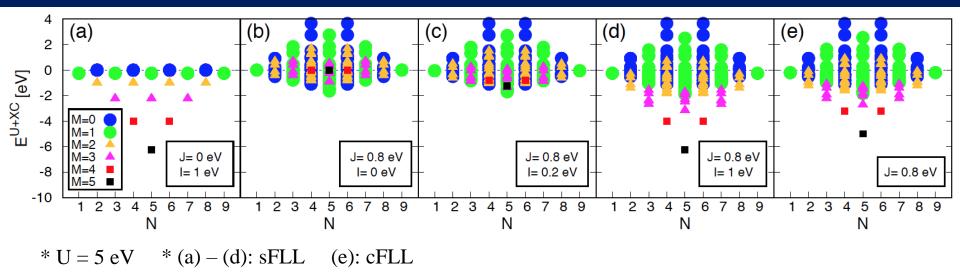
"Model" *d*-shell electronic configurations 4 (b) 2 All possible integer-occupancy configurations \checkmark E^{U+XC} [eV] 0 e.g.) $_{10}C_5 = 252$ configurations for 5 electrons -2 -4 sFLL Hund J and Stoner I used as the control parameters \checkmark -6 J= 0.8 eV -8 I=0 eVM=5-10 1 2 3 4 5 6 78

S. Ryee and MJH, Sci. Rep. (2018)

9

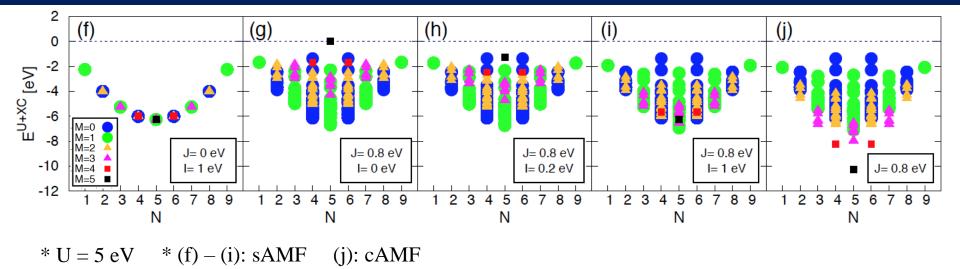
Ν

Analysis (1): Energetics (FLL)



- ✓ cFLL (charge-only density functional formulation)
 → The moment formation is favored as J increases.
- ✓ sFLL (spin-density functional formulation)
 → J in competition with I_{Stoner} : even for sufficiently large J, high-spin state can be unfavored.

Analysis (1): Energetics (AMF)



cAMF \rightarrow The moment formation is favored as J increases.

sFLL \rightarrow J in competition with I_{Stoner} : high-spin state is hardly favored.

sDFT+U (based on spin-density XC) can easily give *unphysical* electronic and magnetic solutions...! (consistent with the previous case studies)

J-only contribution of DFT+U potential:

$$\widetilde{V}_{J,m_1}^{\text{int},\sigma} = \sum_{m_2,\sigma'} \{ \langle m_1, m_2 | V_{J,ee} | m_1, m_2 \rangle - \langle m_1, m_2 | V_{J,ee} | m_2, m_1 \rangle \delta_{\sigma\sigma'} \} n_{m_2}^{\sigma'}$$

J-only (excluding *U*-related terms) contribution to the Coulomb interaction tensor:

$$\langle m_1, m_2 | V_{J,ee} | m_1, m_2 \rangle = \sum_{\{m'_i\}} \left[S_{m_1m'_1} S_{m_2m'_3} \left\{ \sum_{k \neq 0} \alpha_k (m'_1, m'_3, m'_2, m'_4) F^k \right\} S_{m'_2m_1}^{-1} S_{m'_4m_2}^{-1} \right]$$

$$\alpha_k: \text{Racah-Wigner numbers}_{F^k: \text{Slater integrals}}$$

SDFT+U

$$\widetilde{V}_{\mathrm{cFLL},m}^{U,\sigma} = \widetilde{V}_{J,m}^{\mathrm{int},\sigma} + J\left(\frac{N}{2} - \frac{1}{2}\right)$$

CDFT+U

$$\widetilde{V}_{\mathrm{cAMF},m}^{U,\sigma} = \widetilde{V}_{J,m}^{\mathrm{int},\sigma} + J\left(\frac{2l}{2l+1}\frac{N}{2}\right)$$

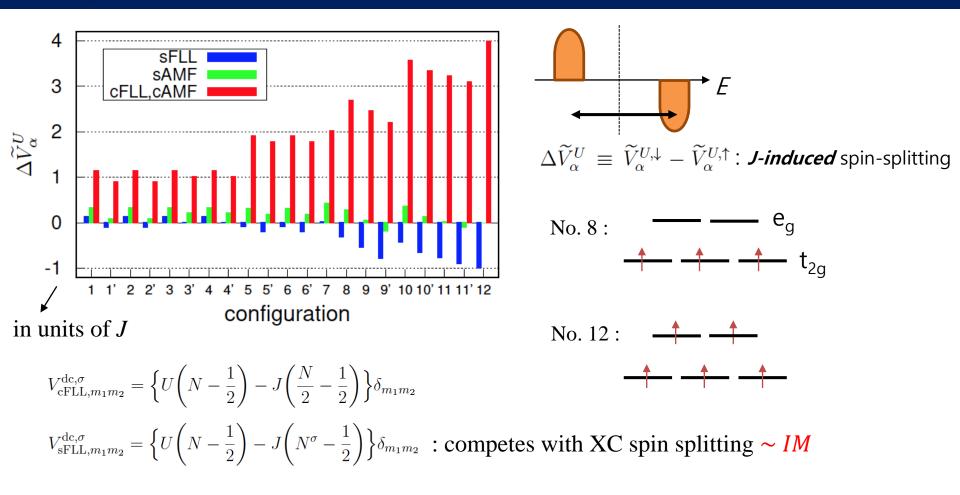
spin-independent 'd-c' potentials

$$\widetilde{V}_{\mathrm{sFLL},m}^{U,\sigma} = \widetilde{V}_{J,m}^{\mathrm{int},\sigma} + J\left(N^{\sigma} - \frac{1}{2}\right)$$

$$\widetilde{V}_{\mathrm{sAMF},m}^{U,\sigma} = \widetilde{V}_{J,m}^{\mathrm{int},\sigma} + J\left(\frac{2l}{2l+1}N^{\sigma}\right)$$

spin-dependent 'd-c' potentials

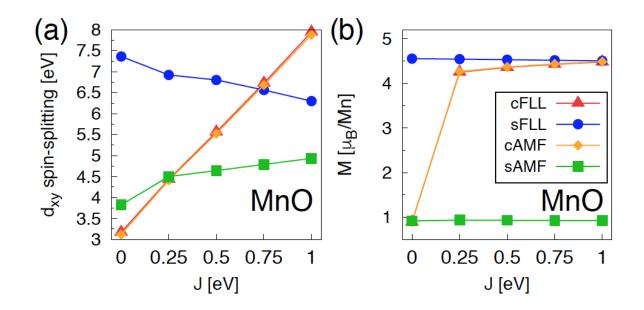
Analysis (2): Potentials



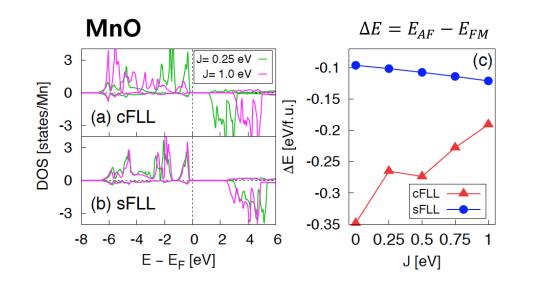
In CDFT+U, the spin splitting is nothing to do with double counting.

In **SDFT+U**, the double-counting potential is not cancelled out by SDFT contribution (~ *IM*): Ambiguity in describing spectral property.

Application to real materials: MnO and NiO



cFLL and cAMF : Low-spin to highspin transition is well described as a function of J, which is not the case for sFLL and sAMF.



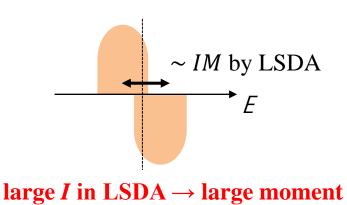
(cf) For half-filled *d*-shell, $J_{ex} \sim -\frac{t^2}{U+4J}$

S. Ryee and MJH, Sci. Rep. (2018)

Application to real materials: BaFe₂As₂ (**AF metal**)

• LSDA overestimates the moments of Fe-pnictides (Exp. ~ $1 \mu_B$)

System	Moment	J_{1a}	J_2	J_{1b}	$J_{1a}/2J_2$	$J_{1a} + 2J_2$
LaFeAsO	1.69	47.4	22.4	-6.9	1.06	92.2
CeFeAsO	1.79	31.6	15.4	2.0	1.03	62.4
PrFeAsO	1.76	57.2	18.2	3.4	1.57	93.6
NdFeAsO	1.49	42.1	15.2	-1.7	1.38	72.5
CaFe ₂ As ₂	1.51	36.6	19.4	-2.8	0.95	75.4
SrFe ₂ As ₂	1.69	42.0	16.0	2.6	1.31	74.0
BaFe ₂ As ₂	1.68	43.0	14.3	-3.1	1.51	71.5
KFe ₂ As ₂	1.58	42.5	15.0	-2.9	1.42	72.5
LiFeAs	1.69	43.4	22.9	-2.5	0.95	89.2



BaFe₂As₂

1) Empirical way of accounting for spin-fluctuations; $I_R \sim sI$

S. Ryee and MJH, arXiv:1709.03214

2) Using *negative* U in sFLL

. . .

. . .

L. Ortenzi et al., PRL (2015)

J. Lischner et al., PRB (2015)

M. Yi et al., PRB (2009) H. Nakamura et al., Physica C (2009)

	2			
$U \; [eV]$	J [eV]	DM	$M^{\rm cFLL} \; [\mu_B/{\rm Fe}]$	$M^{\rm sFLL}$ [$\mu_B/{\rm Fe}$]
2.3	0.3	dual	0.94	2.82
		full	0.29	2.63
	0.5	dual	1.78	2.77
		full	0.75	2.59
	0.7	dual	2.34	2.73
		full	1.33	2.56

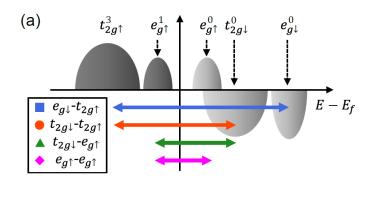
M. J. Han et al., PRL (2009)

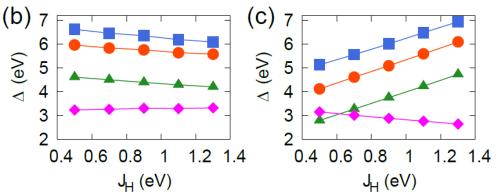
Application to real materials: LaMnO₃

SGGA+U GGA+U (b)_{1.5} ' (a) G-AFN 1.5 J_H (eV) J_H (eV) 1 1 0.5 0.5 **G-AFM** 2 5 6 2 6 3 3 5 4 4 U (eV) U (eV)

S. W. Jang et al, arXiv:1803.00213

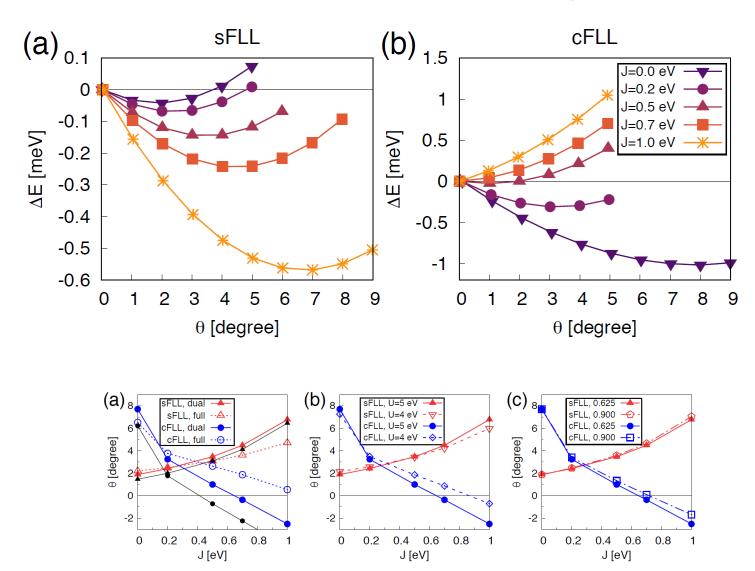
The first CDFT+U calculation for this classical material. The detailed electronic structure and orbitaldependent magnetic interaction analyzed.





The Case for Non-collinear Orders

S. Ryee and MJH, J. Phys. CM (2018)



Summary and Perspective (Part 2)

✓ Formal analysis clearly shows that the use of spin-density XC functionals in combination with +U or +DMFT can easily lead to unphysical and uncontrollable errors.

 As a rule of thumb, cDFT+U with FLL double counting can be recommended.

 For non-collinear magnetism, further analysis and development are certainly requested. Probably also for other issues like RKKY-type magnetism.