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Relativistic effects

 Difference between Schrodinger and Dirac equations

 Large for heavy elements

 Correct prediction of d-band which is important for catalysts

 Spin-orbit coupling leading to many interesting physics:

• Anisotropy energy of magnets

• Orbital magnetic moment

• Rashba effect

• Topological insulators



Dirac equation

Large components Small components

Pauli matrices

• Under the Lorentz transformation, the equation is invariant.

e.g., in case two coordinate systems move with a relative velocity v along x-direction

• It contains the first order derivatives with respect to space and time. 

• It includes spin automatically without ad-hoc treatments.



Equations for atom

Schrodinger 

equation

Dirac equation

Degeneracy: 2l

Degeneracy: 2(l+1) 

Scalar relativistic equation

By considering the degeneracy, a mean κ can be calculated as

By inserting the mean κ into the Dirac eq.,  

one can derive the scalar relativistic equation.



1s and 6s radial functions of Pt atom

Red:     Schrodinger

Green:  Scalar relativistic

The radial functions of  

1s-state shrinks due to 

the mass and potential 

gradient terms. 

The radial function of 6s state has 

a large amplitude in vicinity to 

the nucleus because of 

orthogonalization to core states

All the s-states shrink due to the mass and potential gradient terms. 

Relativistic effect for s-states:



2p and 5p radial functions of Pt atom

Red:     Schrodinger

Green:  Scalar relativistic

The radial functions of 

2p-state shrinks due to 

the relativistic effect 

originating from the 

mass and potential 

gradient terms. 
The 5p state has a large amplitude 

in vicinity to the nucleus because 

of orthogonalization to core states

All the p-states shrink due to the mass and potential gradient terms. 

Relativistic effect for p-states:



3d and 5d radial functions of Pt atom

Red:     Schrodinger

Green:  Scalar relativistic

There is a competition between the relativistic effect and screening effect by core 

electrons. In case of the 5d-state, the screening effect is larger than the former. 

The radial function of  

3d-state shrinks due to 

the relativistic effect.

5d state delocalizes due to 

increase of screening by 

core electrons

Relativistic effect for d-states:



4f radial function of Pt atom

Red:     Schrodinger

Green:  Scalar relativistic

The 4f-state delocalizes 

due to increase of 

screening by core 

electrons.

Relativistic effect for f-states:

The screening effect is dominant, resulting in delocalization of f-states.



Eigenvalues (Hartree) of atomic platinum calculated by the 

Schrödinger equation, a scalar relativistic treatment, and a fully 

relativistic treatment of Dirac equation within GGA to DFT.

Eigenvalues of Pt atom

It turns out from the comparison between 

‘sch’ and ‘sdirac’  that

• The eigenvalues of the s- and p-states are   

always deepened by the relativistic effect. 

• The eigenvalue of the 3d, 4d, 5d, and 4f 

states become shallower.

Scalar relativistic effects

• The mass and potential gradient terms 

affect largely core electrons, leading to 

localization of those electrons.

• Even the valence s- and p-states 

localize due to the orthogonalization to 

the core states. 

• The d-states are affected by both the 

localization effect and screening effect 

with the core electrons.

• The 4f-state is mainly affected by the 

screening effect of the core electrons.



Spin-orbit coupling

Dirac equation

Degeneracy: 2l

Degeneracy: 2(l+1) 

The Dirac equation has a dependency on κ or j, the dependency produces a coupling 

between l and spin quantum number. This is so called ‘spin-orbit coupling’.
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• The core states have a large SO-splitting.

• The s-stage has no SO-splitting.

• The SO-splitting decreases in order of p-, 

d-, f-…., when they are compared in a 

nearly same energy regime.



First-principle calculations of Hund’s 3rd rule

By changing relative angle between spin and orbital moments, one can 

calculate how the total energy varies depending on the angle, leading to 

a direct evaluation of  Hund’s third rule.

Less than half in the shell structure    ⇒ The anti-parallel is favored

More than half in the shell structure  ⇒ The parallel is favored

d1

d9



Orbital magnetic moment

The orbital moment for localized electrons can be calculated by projecting wave 

functions onto the local angular momentum operator on each site as follows:

[1] A. Svane and O. Gunnarsson, Phys. Rev. Lett. 65, 1148 (1990). 



Spin-orbit splitting

e.g., GaAs

Without SOI With SOI

(a) M. Cardona, N. E. Christensen, and G. Gasol, Phys. Rev. B 38, 1806 (1988). 

(b) G. Theurich and N. A. Hill, Phys. Rev. B 64, 073106 (2001). 

(a) (b)



Simplification of Dirac eq. (1)

Assuming that 

With the assumption, the Dirac eq. can be simplified as

It looks Schrodinger eq., but the wave function is a two-component spinor.



Simplification of Dirac eq. (2)

By expanding explicitly the simplified eq., we obtain 

This has the Zeeman and diamagnetic terms, but unfortunately 

does not take account of the spin-orbit interaction.

By ignoring the diamagnetic term, and giving j-dependence 

of V, we get the following eq: 

This is the equation employed in a widely used non-collinear 

DFT method.



Relativistic pseudopotential

Radial Dirac eq. for the majority component

For each quantum number j, the Dirac eq. is solved numerically, 

and its norm-conserving pseudopotential is constructed by the MBK scheme. 

The unified pseudopotential is given by 

with the analytic solution for spherical coordinate: 



Non-collinear DFT (1)

Two-component spinor

The charge density operator is defined by

The total energy is a simple extension of the collinear case.

The variation of wave functions leads to 



Non-collinear DFT (2)

The spin-1/2 matrix gives us the relation between the spin 

direction in real space and spinor.

U

Condition

We would like to find U which diagonalizes the matrix n, 

after algebra, it is given by 



LDA+U within NC-DFT

In conjunction with unrestricted Hartree-Fock theory, we introduce a Hubbard term.

Starting from the diagonal occupation matrix, a rotational invariant

formula can be obtained even for the NC case.

The occupation number operator is given by 

Then, the effective potential operator becomes



Constrained NC-DFT: a harmonic constraint

Each atomic site, (2 x 2) occupation matrices are constructed:  

Constraint matrix From two-component spinor

Then, a constraint energy can be calculated by the following 

energy functional:

By specifying the spin direction and the magnitude at each site, 

one can control spin (orbital) magnetic moment self-consistently. 



The effective Hamiltonian 

due to the constraints and LDA+U 

The effective Hamiltonian due to the constraints 

and LDA+U take the same form

Thus, we only have to add each contribution, 

leading to that the implementation makes easier.



Example: a harmonic constraint

The spin direction is controlled by the harmonic constraint, 

and the spin moment is also determined self-consistenly.

Cr2 dimer



bcc-Fe with various spin states
(0)

DFT DFT CSE E E To take account of spin structures with 

arbitrary direction and magnitude, the 

total energy is calculated by a constraint 

scheme within non-collinear DFT 

(GGA). 
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Anisotropy and magnetization in magnets

κ = (K1/μ0Ms
2)1/2

hardness parameter 

K1: 

magnetic anisotropy 

constant

μ0Ms:

Saturation 

magnetization

Hono@NIMS

FePt having 

a large K1



Crystal structure of FePt

PtFe alloy is known to have three ordered phases.

L12-Fe3Pt  ⇒ Ferromagnetic

L10-FePt ⇒ Ferromagnetic with high anisotropy

L12-FePt3 ⇒ Anti-ferromagnetic 

L12-FePt3L12-Fe3Pt L10-FePt

a=3.734Å

Expt.

a=3.86Å, c=3.725Å

Expt.

a=3.864Å

Expt.



Exercise 7: Anisotropy energy of L10-FePt

MAE (meV/f.u.)
OpenMX          2.7

VASP                2.6*

Expt.       1.1

* R.V. Chupulski et al, 

APL 100, 142405 

(2012)

Lattice 

constant from 

Expt.



Relevant keywords for constraint scheme

scf.Constraint.NC.Spin on # on|on2|off, default=off 

scf.Constraint.NC.Spin.v 0.5 # default=0.0(eV)

<Atoms.SpeciesAndCoordinates           

1   Cr    0.00000   0.00000   0.00000  7.0  5.0 -20.0 0.0  1  off

2   Cr    0.00000   2.00000   0.00000  7.0  5.0  20.0 0.0  1  off

Atoms.SpeciesAndCoordinates>

To calculate an electronic structure with an arbitrary spin orientation in the non-

collinear DFT, OpenMX Ver. 3.8 provides two kinds of constraint functionals which 

give a penalty unless the difference between the calculated spin orientation and the 

initial one is zero. The constraint DFT for the non-collinear spin orientation is 

available by the following keywords:

The constraint is applied on each atom by specifying a flag as follows:

http://www.openmx-square.org/openmx_man3.8/node106.html

See the manual for the details at 



Outlook

• Hund’s 3rd rule

• Orbital magnetic moment

• Magnetic anisotropy in magnets

• Topological insulators

• Rashba effect

• etc.

The scalar relativistic effects 

• Shrinking of core states by the mass and potential gradient terms

• Delocalization of valence electron due to screening by 

localization of core electrons

The spin-orbit coupling bridges real and spin spaces 

and produces many interesting physics such as


