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Challenges in computational materials science

1. To understand physical and chemical properties
of molecules and solids by solving the Dirac
eguation as accurate as possible.

2. To design novel materials having desired
properties from atomistic level theoretically,
before actual experiments.

3. To propose possible ways of synthesis for the
designed materials theoretically.



Schrodinger equation and wave functions
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Conditions that wave functions must satisfy Erwin Sehirodingst

(1) indistinctiveness (1887-1961)

(2) anticommutation (Pauli’s exclusion principle)
(3) orthonormalization

A expression that satisfies above conditions:

t= Z_:CI ‘¢|1(X1)¢| ,(X;)- °¢|Ne (XNe)




Classification of electronic structure methods

Computational

Wave function theory complexity
e.g., configuration interaction (Cl) method
TZZQ ‘¢I1(X1)¢I2(X2)”'¢IN6 (XNG)‘ O(eN)

Density functlonal theory
E(p)  plr) = Zf( 0 (r)i(x) O(N°)

Quantum Monte Carlo method

(U, |H|D,) O(N3™)

(E) =
Wy
(U, Ty)

Many body Green’s function method
G(t,r, E) O(N3~)

Features

High accurary
High cost

Medium accuracy
Low cost

High accuray
High cost
Easy to parallel

Medium accuray
Excited states



Hartree-Fock (HF) method

Slater determinantal funtion

_?,}Eil% v 3&1; o “glg A form of many electron wave funtion
L R satisfying indistinctiveness and anti-
Pyp = U , . . . commutation.
' One-electron integral
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Results by the HF method
e.g., H,0

HF Experiment
0.940 0.958
106.1 104.5
4070 3657

1826 1595



Correlation energy

Ecorr — Eexact - EHF

e.qg.
H,O

E.... = -76.0105 a.u.

E., = -0.1971a.u.

corr

The correlation energy is about 0.3 % of
the total energy:.



Exchange integral

By noting one particle wave functions are expressed by a product of
spatial one particle and spin functions, we obtain the following
formula:

K =-|[dodo,n (a)m (o) (o) (o)

<JJ a6

_rzl
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Ifn#n - K=0 Ifn=n, - K#0

Exchange interaction arises between orbitals with a same spin
funcion. — K<O0 in general — Hund’s 15t rule




Two-body distribution function in HF method (1)

A two-body distribution function is defined by

N(N —1
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In case of parallel spin P_(ri,r2) = g 7(r )(n (rg) + ng(r1, rz))

LD | = I}JIn—

In case of antiparallel spin  P.(r;,ry) = > (ry)n""(rz)

In the HF method, electrons with the
where different spin are fully independent.

Spin density  po(r) =

I
N
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Exchange | g (r1) i (r) 2
hole density Ny (T1,Tg) = — n7 (1)




Two-body distribution function in HF method (2)

- 0CC. 1% (0 VA (e V]2
Exchange hole density 7, ) = — = um(:nuwcn 2)|
. ) no(ry)

Pauli’s exclusion principle

no(ry.ry) = —n’(ry) —> P:[I'l? 1‘1;] — 0

Sum rule /?'Eg(l‘l.rg)dgrg = —1

Exchange hole density for Jellium model
9 (;n(km )2)

ng(ry,r9) = ——=n r—

2

krp = (3n°n)!/3

In case of non-spin polarization, n”(r) = n/2

Distribution of exchange hole
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Jellium model

Suppose that electrons uniformly occupy
In a rectangular unit cell with a lattice

V=L° constant under periodic boundary
condition, and that the positive
compensation charges also spread over the

1 unit cell so that the total system can be

neutral. 0 !
m=11 = 0
One-particle wave function

1 27N,

lljk/\(r) — ﬁ e}{p(ik ‘ I')'T]/\ ki = 7 n; =0,+1,+2,---

The second quantized Hamiltonian of the jellium model
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Jellium model in high density limit

Scaled Hamiltonian with mean distance r, of electrons
A 1 I 4
_ _¢€° T k2Aaf s At T

% kpal 47, O

r, — 0 corresponds to the high density limit, and the second
term becomes a small perturbation. Thus, the first term gives
the zeroth order energy, while the second term gives the first
order correction in the perturbation theory.

E=E +E A
0 L Hozzlkza,ilakﬂ
E, :<F HO‘F> k,;2 A
A T
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Energies In the jellimum model
The evaluation of E, and E, Is cumbersome, but possible
analytically, and as the result we obtain the following formulae:

Kinetic energy

o
N 10
/3
E__%(3)"
N 4 \ 1

"hese results are very important, because they suggest
that the total energy seems to be expressed by electron
density, leading to a birth of a density functional theory.

E, 3e‘a, ( 37 )2/3 o

Exchange energy




L_ocal density approximation (LDA)

An energy of the system is approximated by employing a local
energy density which 1s a function of the local density p.

1 e(p(ry)) p(ry) AV
E (p(1,)) p(ry) AV
e(p(r3y)) p(r3) AV

Y e(p(ry) p(r;) AV

= [&(p(r)) p(r) dr




ThomaS'Fe rmi mOdel The simplest density functional

Local density approximation (LDA) to the kinetic energy No exchange-correlation
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The kinetic energy density t(p) is that of non-interacting electrons in the jellium model.

The second quantized Hamiltonian of the jellium model
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. . A 1
H=Hy+ H = Z 5 oV Z Z *’-'11{+q,:~.1‘51p A2 ApAz kX
5 4V rpq q° A1A2
EWY 1
N N
1 2/ 1A \
= = Z k {~F|ﬂ-k}l |F;
2N '
1

— HQ(L; — k)




Thomas-Fermi-Dirac model

LDA to the kinetic and exchange, but no correlation

L1Z;
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The first order perturbation energy in the jellium model is used as the exchange
energy density €,(p).

The second quantized Hamiltonian of the jellium model
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Faillures of Thomas-Fermi-Dirac model

Electron density of Ar
1s  2s,2p

15}
— HF

----- TFDsw
——— TFDW

10t

re

3s,3p

05} |

10

by W.Yang, 1986

1. No shell structure of atoms

2. No binding of atoms

3. Negative ion is unstable

The failures may be attributed to the
large error in the Kinetic energy

functional.

The kinetic energy (a.u.) of Ar(a.u.)

HF 526.82
TFP 489.95
20 KS-LDA 525.95

a: Cemency-Roetti (1974)
b: Mrphy-Yang (1980)



Hohenberg-Kohn’s theorem

The first theorem

The energy of non-degenerate ground state
can be expressed by a functional of
electron density.

Elpl = [ p(x)v()d + Tlp) + Jlp] + Exclp
\ - ,
The second theorem Frilp] W. Kohn (1923-2016)

The ground state energy can be obtained by minimizing
the functional with respect to electron density.

Elp] < Elp]

Hohenberg and Kohn, PR 136, B864.



The proof of the first theorem by HK

Suppose that different vs give the same p.
H=T+v —— fu=pv ~—
H =T+ — v —pw —
E < (VIHV) = ([HV)+ <‘1f"\(ﬁ—f§f’)\@’>
= E"Jr/p -t;"(r))d.r
E' < (VIH'|W) = (V|H|V)+ <\If| — H)|v)
_ E-— / o(r) (v(r) — o/ (x))dr

Adding above two equations leads to

E+E <E+F
A discrepancy occurs. Thus, for a given v, p is uniquely determined.

It was assumed the v-representability that a corresponding v exists for a given p.
Later the proof was modified under the N-representability condition by Levy (1979).



The proof of the second theorem by HK

According to the first theorem and the variational principle,

lIf‘H‘ //} r)dr + Fuk|p] > E|p]

Thus,
Elp| < Elp]

By the proof of the HK’s theorem, the TF and
TFD models have been regarded as approximate
theories for the rigorous DFT.



v- and N-representability (1)

The proof for the first HK theorem shows

v - p === (A
but never show V «— p === (B)

If the condition (B) is satisfied for a given p, it is mentioned that the density
p is v-representable. In the HK theorem we assumed the v-representability

implicitly.

On the other hand, 1f the following condition (C) 1s satisfied for a given p, it
IS mentioned that the density p is N-representable.

¥ — p = (C)

v-representability

v & Y & p
N-representability General

V @ LP <:> p V_ N_

General case

v & v &)

Domain of p




v- and N-representability (2)

Condition of v-representability

For general cases, the condition is unknown.
Condition of N-representability
Gilbert, PRB 12, 2111 (1975).

Positivity Charge conservation Continuity

p(r) >0 / p(r)dr =N [ ‘Vp(r)”g‘gdr < oC

The condition of N-representability is physically reasonable, and
easy to hold. Thus, it would be better to formulate DFT under the
N-representability, which was actually done by Levy in 1979.



Theorem by Levy

Theorem |: The ground state energy Eg is the lower bound of E[p].

Blp] = Flp] + [ vesa(x)p(r)dr

Flp] = min(U|(T + Voo)| )

W—p

Theorem IlI: The ground state energy E¢ IS represented by the ground state
one-electron density pgg.

Eas = /"lz’ext(l‘)ﬂc;s(l‘)dl‘ + F[,Oc;s]

Levy, PNAS 76, 6062 (1979)



Proof of the theorem by Levy

Let us consider a constraint minimization of E.

Fog = 11}1111<\IJ| (T 4+ Vie + Vext )| W)

= min {min(lli (T + Ve + Vext ) |\IJ>}

P U—p

— mgn {%1111<\Ij (T — Vee ) + /t*eﬁ (r)dr}

— 111111{ +/2M dr}

The first line is just a conventional variational problem with
respect to .

In the second line, two step minimization is introduced.
(1) Choose N-representable p
(2) Minimize E with respect to y giving p min
(3) Repeat steps (1), (2) miIn y—p
Yo,
The third line is a transformation of the second line.
The fourth line is a transformation of the third line.

The theorem 1 is proven
by the first = the fourth
line.

The ground state density
Pas IS N-representative,
Implying that it is included
In the domain. Thus, the
fourth line proves the
theorem 2.



Kohn-Sham equation (1)

Since the kinetic energy functional in the TFD model is a crude
model, the majority part of the kinetic energy is evaluated by
that of a non-interacting system.

Elp]=T|p.

=T.+J|
=T.+J|

The kinetic energy of
non-interacting electrons

OCC

:——Z¢V ¢ dr

+3[p]+ | ey dr + EQ [ p]
|+ .PVexterr Ex [p]+(T -T,)
)+ [ pVpedr +E, [ o]

Electron density of non-

Interacting electrons
0CC

p(1) =24 (1)) (1)



Kohn-Sham equation (2)

oE . .
—— = (0 leads to the following Kohn-Sham equation:
09
Hsth = oo = — 22
K8¢i _8I¢I HKS:_EV +Veff
KS \jﬁeczi\r/.e)p(ier\\‘;ial (r) » (r) . 5EXC
eff o t Hart
ex ar(ree) 5p(r)
P\r
Vv (r) = dr
Hartree J. ‘r —_r |‘
Comparison of the kinetic energy of Ar HFa 526.82
TFP 489.95

a: Cemency-Roetti (1974) _
b: Mrphy-Yang (1980) KS-LDA 525.95 In a.u.



oE
Proof of —=0
op
KS eq. Is derived by assuming S6E /¢ =0.

However, how about 6E/5p=0 7

By expressing the Kinetic energy as |
T, = Zniff — / p(r)veg (T)dr.

and considering variation of each term, we have the following eq.

) e - @ o '
SE p) /dmp ( ) + /dl {;; r') — veg(r) — /dr p(r’) ;j({r))

o GEXC
=
T )

To satisfy 6E=0 for arbitrary op, the following relation should be satisfied:
Ueff — lf(r) + / p(r ) dr’ + l"‘xc(r)
J |jr—r|

This is nothing but the definition of the KS effective potential. Thus, p calculated by the
KS eq. satisfies 0E/6p=0, which might be the density of the ground state.



Eigenvalue of KS eq.

The physical meaning of eigenvalues ¢ is non-trivial,
since € were Introduced as Lagrange’s multipliers.

La p(r') ., 0Ex|p]
Ue — l[ { II -
) == Z 5 e T

Mathematically, the eigenvalue ¢; is the partial derivative of
the total energy w. r. t. n;.

Janak’s theorem (O F)

872,@-




Derivation of Janak’s theorem

By noting that the charge density is determined by {n,} and {v,},
N
= Z T; ‘L'E(r) -
i=1

It is found that the variation of total energy is given by

(5E[{;--3.;f}_ {@k}} — ;/dr (Si) OV + Z (OE) S,

Ony
The first term of the right hand side is zero because of the derivation
of KS equation, thus we have

oF _ (0
on;  \On, n
1 ap(r
B /dn ( ET) +jd1ﬂ p(r) { [p(r)] /dl } r_’?n ’
B /dll ( %T) --i +fd1 L‘! ll(]', Veff "'1. ]" !




Comparison between experiment and theory
STS (scanning tunneling spectroscopy) for SWCNT

Avramov et al., CPL 370, 597 (2003).
Semiconducting SWCNT

SWNT (14,3)
Theory, 6-31G* (b)

e

STS Experiment
/}\Mﬂ) !\
06 00 06
Energy, eV

DOS, arb. units
J"J
1!
Ty

i

Fig. 2. The STS experimental normalized conductance
(V/1(di/dV) —V [3] (a) and theoretical (b) PBE and PBEO
DOS of semiconducting chiral (14,3) SWNT.

Metallic SWCNTSs

SWNT (9,0, (12.0) (15,0) DOS

o
STS Experiment 6-31G* Theory ‘.' \

PBEO ©.0)

- =

N PBE
ST\

DOS, arb.units
g
we]
to
)
)

-1.5 -1.0 0.5 0.0 0.5 Lo L3
Energy, eV
Fig. 3. The STS experimental conductance d/ /dV — V [1] (solid

line) and theoretical (dashed lines) PBE and PBE(O DOS of
metallic zigzag (15,0), (12,0) and (9,0) SWNTs.

One can see the crude approximation works well expect

for the band gap of SWCNTs.



d-band width: Theory vs. Expt.

Angle resolved photoemission for transition metals

N L |
Eastman et al.,

PRL 44, 95 r 7 a N

) x . o \ ™ 2

(1980) 2" i{ —a |

SN

Though LDA - IR

calculations qualitatively — ='r_ ., oovee \ 20 7 &
reproduce the d-band T

width of 3d-transition _
FIG. 4. Occupied d-band widths (eV) and magnetic
metals, however’ the exchange splittings (293 K). The widths are at the

symmetry points P, L, L, and X, and at X for Fe, Co,

1 1 Ni, and Cu, respectively, while the exchange splittings
CaICUIatlonS OvereStlmate ar:a at P, I', and near L. for Fe, Co, and Ni, respec-

tively. Theoretical widths are taken from Ref. 1. For

the Values abOUt 1eV Co, experimental exchange splittings are 0.9 (I';;) and

1.2 (I'y;») eV. An average value is given in Fig. 4.
Experimental accuracies are about + 0.2 eV.



Approximation to E,

In the KS method, once we know E,[p], the ground state of
the system can be obtained. However, as this quantity contains
all the details of electron correlation, a universal functional

has been still under development. In most of practical DFT
calculations,

LDA (Local Density Approximation)
or

GGA (Generalized Gradient Approximation)
Is employed. In LDA, E, [p] is given by
Eelpl = [ exelp(x))p(r)dr

g, IS an exchange-correlation energy density of jellium
model with the electron density p.



Correlation energy in Jellium model

- 3 2 2 373 3 i
In Jellium model  t(p) = —@3m)3pF  =lp)=-—2 (_) o}
The exact analytic formula of ¢ (p) 1s unknown.

It is numerically evalulated by QMC, and it is fitted to analytical functions.
QMC  D. M. Ceperley and B. J. Alder, Phys. Rev. Lett., 45, 566 (1980)

Analytical formula by fitting

S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980)

-1*3 2b Q) brg (r —x0)%  2(b+ 2x0) Q)
co =A<l + — te - — ] : + - tan
{ . o TR (x0) | X(2) o Moot
0
Ar \ —1/3 i
fo = (?”) A = 0.0310907 |
r=r)? b= 3.72744 o
Q = (4c — b*)V/? c=12.9352
X(z)=2>4+br +c Ty = —0.10498

}



Accuracy of KS-LDA

Geometry of molecules and bulks
Error of 1-5 %

Cohesive energy
Error of 0.1-0.5 eV

Dipole moment
In spite of the crude approximation by

Error of 10 % LDA, the results look good.
Excitation energy
Underestimation of 50%

vdW energy
Not in tolerable range



General consideration to LDA (1)

LDA is based on the assumption that each part of the system can be locally
regarded as a homogeneous electron gas with the local electron density p(r).
This condition is mathematically expressed as

<< p(r) e (A)

with kp(r) = {37%p(r) } /2 the local Fermi wave number.

The left hand side of Eq. (A) is the change in the electron density over the
Fermi wave length, which should be much smaller than the electron
density itself for the validity of LDA.

It is known that Eq. (A) is not satisfied in real systems, especially for core
electrons. Nevertheless, it is also known from many examples that LDA
works much better than expected. Why?



General consideration to LDA (2)

There are mainly two reasons why LDA works much better than expected.

1. ASCF A B
In most cases, we only need the difference in total —._.:_ LDA
energy between different situations. For example, the oo
energy difference between the structures A and B. Then

the common error of LDA cancels out. This is a nice
aspect of variational principle.

Important

1. Sum rule in the xc hole density

As the total energy iIs an integrated quantity over the
space, only the spherical average of xc hole density
affects to the total energy. The sum rule of the xc hole is

an important factor.



Exchange-correlation hole

Exchange energy

The Coulomb interaction between and electron and exchange hole
whose integral gives —1.

//P ry)px(T1,T2) dridrs /p}{(rl_ ry)dry = —1

T — T

Correlation energy

The Coulomb interaction between and electron and correlation
hole whose integral give zero.

B 9/ prpe(ri ) o0 /,oc(n. ro)dry = 0

T — Ty

An important consequence is that only the spherical average of
exchange-correlation hole can attribute to the xc energy.
1 - SA
F.. = 5 / drp(r) '/0 drsdsplit(r, s)



Exchange hole of Ne and its spherical average

Exchange hole

10 +

0.5

Its spherical average

" Ne - r" nxs-u- [ r,

0.0

O. Gunnarson et al., PRB 20, 3136 (1979)



Deficiencies of LDA

1. The band gap of solid is underestimated about 50%.

2. vdW interaction is not described properly:.

. The lattice constant is underestimated by a few %.

3
4. Poor description of 3d transition metals: strucutre and magnetism
5

. The activation barrier of chemical reaction is largely
underestimated.

6. Orbital polarization of transition metal oxides
IS not described.



GGA by Perdew, Burke, and Ernzerhof (PBE)

PRL 77, 3865 (1996).

They developed a GGA functional which satisfies several conditions such as (1)
the sum rule for exchange and correlation holes, (2) the asymptotic forms at s — O.

It can be writtenas  FOCA[py ny] = f dr ne™ (n)Fxc(rg, £, s).
el — 302k, /ar < ()
s = |Vnl|/2kpn
{ = (n — ny)/n
n=23/4mr’

For the most of real materials, r, ranges
from 2 to 6. Then, F,. increases with s,

I.e., E,. more negative with the
Increasing s.

For most physical r,, GGA favors density
Inhomogeneity more than LDA does. s = |Vnl|/2kpn

F_.(r.¢,s)




LDA vs GGA: p of Ne

At two shell structures, GGA favors more localized states.
GGA favors density inhomogeneity— localized states are favored.

12

 GGH —
GGA-LIA
10 b ]

2t

EF

lensity x dpi x r™2

(GGA-LDA) x 100

i 0,5 1 1.5 2 2.0 3
r (a,.u,)



LDA vs GGA: Atomic calculations by GGA-PBE

Exchange energy (-Ex, in Ha)  Correlation energy (-EXx, in Ha)

Atom ]:\ilCI LSDA PB F J.'\ton] Exact I S r)‘\ PBt

H 0.3125 0.2680 0.3059 H 0.0000 0.0222 0.0060)
He 1.0258 0.8840 1.0136 He 0.0420 0.1125 0.0420
Be 2.6658 2.3124 2.6358 Be 0.0950 0.2240 0.0856
N 6.6044 5.908 6.5521 N 0.1858 (.4268 0.1799
Ne 12.1050 11.0335 12.0667 Ne 0.3939 (0.7428 0.3513
Error, % 0 0.8 0.8 Error, % 0 128.3 6.4

The tables were taken from R.M. Martin, “Electronic Structure”.

The significant improvement for E, and E_ was
made by GGA.



LDA vs. GGA: Cohesive properties of Iron

Asada and Terakura, PRB 46, 13599 (1992).

GGA reproduces the experimental ground state (FM-bcc),
while LDA predicts the NM-hcp state as the ground state.

-2522.86 , . [ , I ~2528.30 R
[~ Fe by LDA — — Fe by GGA ]
88 - A - 32 _
—— B s - O -
2 © =
o - L I — @ = -
- fﬁ’ — o © .,D
RS- - .
S B i = o B o " —
2 . = a B
|-L| o0 - ';’ f,s)J /_/'. LLI 4| o] (=3 _[:J" F?P}!_ _I__.:.‘I ..-"= n
\ if Jl."' ;a/ u .Hé Frd--;_ i "2
B -~ - . T gzt _
By b‘——*—ﬂf i NM_hC
| NM-fcc  ° FM-bee | i p '}\IM_th ]
’ o \—*_’F‘/‘
L - ) 5 |
NM-hcp 1-bec
92 (- 1 36— Ei(p' N
L | | | I A |

2.5 2.6 2.7 2.5 2.6 2.7 2.8



Comparison between LDA and GGA:
Structural properties of bulks

ilp By
Solid LDA PBE WC Expt® LDA PBE WC Expt.®
Li (A2} 3.363 3435 3.449 3477 15.2 4.0 134 13.0
CiAd) 3.536 3.575 3.558 3.5a7 469 434 451 443
C [AD) 2.447 2471 2.460 2464
Na [(A2) 4.047 4.196 4.199 4225 941 7.85 7.32 7.5
Al TATL) 3.083 4.041 4.023 4,047 B4.3 79.2 BO.6 73
5i(Aad) 5.407 5475 5.437 5430 96.4 BR.7 94.0 b2
K (AZ2) 5.043 5.282 5.256 5.225 4,50 3.6l 3.49 3.7
Ca (A1) 5.333 5530 5.458 5.58 18.7 17.3 17.4 15
V (A2) 2,932 3.001 2965 3.03 213 183 198 162
Fe (A2) 2,753 2.830 2791 2868 256 194 227 167
Ni (Al) 3.423 3518 3468 3524 259 200 231 184 F. Tran et aI.,
Cu (A1) 3.522 .63 3.573 3.60135 {91 141 168 133 PRB 75, 115131
Ge (Ad) 5.632 5769 5.686 5.652 727 59.5 67.8 75.8 (2007)
Rb (A2) 5374 5.670 5.609 5.59 3.59 277 271 306
Sr{Al) 5.786 6.027 5914 6.08 14.4 1.4 12.2 12
Nb (A2) 3.250 3312 3280 3.30 193 171 183 170
Mo (A2) 116 3.164 3.139 3135 294 260 279 272
Rh (Al) 3.759 3.834 3.795 3798 320 259 292 269
Pd (A1) 3848 3048 3.892 3.881 231 170 207 195
Ag (Al) 4.007 4,152 4.065 4.069 140.4 u1.0 118.9 109
Sn (Ad) 6.481 6.061 6.548 f.48] 45.7 36.3 424 53

GGA-PBE: Errorinay: ~0.03 A, in B,: ~ 10 GPa



Successes and failures of GGA

Successes:
1. Accuracy: Mean absolute error
Atomization energy: 0.3 eV (mostly overbinding)
Bond length: Overestimation of 1 %
Bulk modulus: Underestimation of 5 %
Energy barrier: Underestimation of 30 %

2. Accurate description of hydrogen bonding
3. Better description of magnetic ground states (e.g., bcc Fe)

Failures:
1. Band gap: Underestimation of 30 %
2. vdW interaction: No binding in many cases

3. Strongly correlation: No orbital polarization of localized
d- and f-states



Beyond GGA

1. Hybrid functional

Exact exchange is admixed with GGA, leading to a better
description for the band gap problem.

2. Non-local correlation functional

A fully non-local functional based on the Adiabatic

Connection/Fluctuation Dissipation Theorem (AC/FDT). This well
reproduces accurate CCSD(T) results for vdW systems.

2. Orbital dependent functional (DFT+U method)

Strong correlation in localized orbitals appearing transition
metal oxides is taken into account by adding a Hubbard term.



General consideration of eigenvalues
In the HF method and GGA

Multi-configurational
Hartree-Fock Hatree-Fock GGA

Y Due to weak binding to V.,

Y=c,0, + C,0, * ...

_« consisting oftN

V

Due to self-
interaction

= —:
s

s consisting of N
V¢ consisting of N-1

l Due to strong binding to V,,



Band gap by a hybrid functional

The HF method overestimates the
g gap due to lack of screening effect.
15[ -
. 4 GGA underestimates the gap due to
- 1 self-interaction error.

i 1 The hybrid functional (HSE) can
108 MgO | well reproduce the experimental band
: BN * | gap of insulators and semiconductors
e Hartree-Fock due to |ncl_u3|on of a proper screening
" . R GGA-PRE 1 effect, which are well compared to

o _ 1 results by a many body perturbation

i S?jAE . :YE'd'HSE | theory, GW method.

i \ & ovvo

- " sic 1 Paieretal., JCP 124, 154709 (2006).
O % 50 95 Heydetal,JCP 121, 1187 (2004).

_ Shishkin et al., PRB 75, 235102 (2007).
Experimental Gap (eV) Shimazaki et al., JCP 132, 224105 (2005).

Theoretical Gap (eV)
[ )




General consideration of Self-interaction
and orbital polarization

Consider degenerate states are partially filled, e.g., d-

orbitals in oxides.

In case that three degenerate
states are occupied by two
electrons, the occupation of 2/3
for each state is energetically
favored if there is spurious self-
interaction.

?2/3 ,? 2/3 ,? 2/3

If there Is no spurious interaction,
a naive consideration implies that
the left case leads to interaction
of 4/3(=3*2/3*2/3), while in
right case the interaction of
1(=1*1*1).

4L



Orbital polarization of localized d-electrons:
Importance of orbital dependent functional

Han et al., PRB 73, 045110 (2006).

l
Ey=52 (Ug=Jo) 2 {Tr(n3) = Tr(ngn)}.
(a3 o 0.2
The functional is discontinuous at occupation -
numbers of integer, which should be hold in an exact

functional. —_—
C02+: d’
o + % | % %
T e e
T A ] T oA
25 ' z CoO bulk | gs_ ‘ ‘ CoO bulk
ety ol [
" k i MN J /fj I ’”)U E’”‘/ \J)‘ L \ Ll

Energy (eV)



A simple example: H, molecule

H, Is the simplest molecule which has two nuclei and two
electrons. According to the virial theorem, the bonding
energy can be understood by the mechanism (a).

How can we confirm this by DFT ?

F(R.)=T(R.)+ V(R.) Kinetic energy Potential energy
BE(R.) =T(R.) + V(R.) (a) destabilization  stabilization
) (b) stabilization destabilization
Energy curve of H,* (c) stabilization stabilization

E (a.u)

1~ . Virial theorem
2T(R) +V(Rx) =0

SR s 2T(R.) + V(R.) = 0
°%‘ oo D{? — _(-E(RE)_E(R’K))

R ::u.)
S. Fujinaga, Introduction to molecular orbital methods — T(R,D) — T ( RJU)

E(R)




Binding energy of H,

Total energy

(Hartree)
H, -1.16581
H (non-spin polarization)  -0.45781
H (spin-polarization) -0.49914

Spin polarization energy 0.04132

Binding energy =2 H - H,
=2 X (-0. 49914) (-1.16581)

= 0.1675 (Hartree)
=4.56 (eV)

Expt. 4.75 (eV)

The calculated value is underestimated by 0.19 eV.



Total energy (Hartree)

Energy curve of H,

O
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Non-magnetic state
- Ferro-magnetic state
[ 0.750A
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Energy curves of H,

Kinetic energy Potential energy

16f 1! ERI | _
= 15k § a8l | Non-magnetic stateg ]
AR 5 :
F 1'4_' i Lz 191 : Ferro-magnetic state |
I i > | 4
S~ 13_ ! ()] -2 H
B o0 | © i
E 1.2_— : S 21
o 1ar _ 822
aé 1L Ferro-magnetic state | *§ 23l
X 09 i — - o 24t [

0.8l Non-magnetic state 25} |

%% 1 2 3 4 5 6 7 8§ 9 28,12 3 4 5 8 7 8 09

Bond length (Angstrom) Bond length (Angstrom)

AE,;, = 1.11582-0.98309 =0.13273 (Hartree) = 3.612 (eV)
AE =-2.28163-(-1.98139) =-0.30024 (Hartree) = -8.170 (eV)
AE, = -4.56 (eV)

In fact, one can see that the energy gain is due to the virial theorem.

Strictly speaking, the discussion should be corrected in GGA, since the correlation energy includes a part of the kinetic energy.
But the effect is not so large.



Shrinking of Kohn-Sham orbital in H,

| —— Superposition of two atomic orbitals |
158 —— KS orbital of the lowest state

0.5F




Difference electron density

Red: increase of density
Blue: decrease of density

Difference electron density = (electron density of H2) — (superposition of two H electron density)



Why the FM state is stable when separated ?

09+t Non-magnetic state
a —e
S 0.95 -
5 1 _ | Why ?
L Ferro-magnetic state
> -1F — oo ° |
D |
)
o -1.05F
‘s_g 5
2 1.1

-1.15 |

o 1 2 3 4 5 6 7 8 9
Bond length (Angstrom)



Eigenenergies of HOMO and LUMO

Eigenenergies (Hartree)

03

-0.1 1

0.2

0.1r

'04 C 1

LUMO

HOMO
2 4

6 8

Bond length ("r)

According to a simple tight-binding model,

Eigenvalues
E = + rFF

€0

+h

-h

1 1
) = ﬁ-\l—ﬁ.\?
1 1



Density of states of H, at 3 A separation

30 . I
— 0l Red: NM
c
= Blue: FM
o 10}
- up Spin
£ 0
S
- down spin
>-10+
7 i
o
0 20F
_ 1 I 1 1 1 1 1
30-2 0 2 4 6
Eigenenergy (eV)

The chemical potential is set O.



Competition between two energies

For H, at 3A seperation, the energy contributions of the
NM and FM states are given by

Eyin 0.8231 0.9634
Epot -1.7306 -1.9148
E ot -0.9076 -0.9514 i Hartree

In the FM state, the increase of the kinetic energy Is overly
compensated by the decrease of the potential energy which is
the sum of the Coulomb and exchange-correlation energies.

Why does this happen ?



Molecular orbitals of HOMO and LUMO states

At the equilibrium bond length, isosurfaces of the HOMO and
LUMO states are shown below:

HOMO LUMO




Reason why the FM state Is favored when separated

When an electron is promoted from the HOMO to
LUMO states, the Kinetic energy increases, since the
LUMO state has the nodal structure in the molecular
orbital unlike the HOMO state.

On the other hand, the promoted electron can be
resident in the different orbital.

This leads to the decrease of the potential energy
(Coulomb+exchange-correlation energies).

Since the total energy is the sum of two energies, the
energetics is determined by the competition between
them. Around 2.0A, there is the phase boundary.

The mechanism to magnetism often appears such as
magnetization at the edge state of zigzag graphene.

Eigenenergies (Hartree)

Total energy (Hartree)

0.1f

o
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o -1.7306 -1.9148
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Outlook

We have discussed the following issues related DFT.

 Classification of first-principles methods
» Hartree-Fock methods

« Jellium model

 Local density appoximation

« Thomas-Fermi-Dirac model

« Density functional theory

« Proof by Levy

« Kohn-Sham equation

» Janak’s theorem

« LDAand GGA

« Beyond GGA

« Asimple example: H, molecule

| think that there is still a plenty of room for development of DFT.

» Exchange-correlation functionals
« DFT for excited states
» Large-scale DFT methods



